engine.py 16.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
The entry point of inference server. (SRT = SGLang Runtime)

This file implements python APIs for the inference engine.
"""

import asyncio
import atexit
import dataclasses
import logging
import multiprocessing as mp
import os
import signal
import threading
from typing import AsyncIterator, Dict, Iterator, List, Optional, Tuple, Union

# Fix a bug of Python threading
setattr(threading, "_register_atexit", lambda *args, **kwargs: None)

import torch
import uvloop

from sglang.srt.managers.data_parallel_controller import (
    run_data_parallel_controller_process,
)
from sglang.srt.managers.detokenizer_manager import run_detokenizer_process
from sglang.srt.managers.io_struct import (
    EmbeddingReqInput,
    GenerateReqInput,
    GetWeightsByNameReqInput,
    InitWeightsUpdateGroupReqInput,
    ReleaseMemoryOccupationReqInput,
    ResumeMemoryOccupationReqInput,
    UpdateWeightsFromDistributedReqInput,
    UpdateWeightsFromTensorReqInput,
)
from sglang.srt.managers.scheduler import run_scheduler_process
from sglang.srt.managers.tokenizer_manager import TokenizerManager
from sglang.srt.openai_api.adapter import load_chat_template_for_openai_api
from sglang.srt.server_args import PortArgs, ServerArgs
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
from sglang.srt.utils import (
    MultiprocessingSerializer,
    assert_pkg_version,
    configure_logger,
    kill_process_tree,
    maybe_set_triton_cache_manager,
    prepare_model_and_tokenizer,
    set_prometheus_multiproc_dir,
    set_ulimit,
)
from sglang.version import __version__

logger = logging.getLogger(__name__)
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())


class Engine:
    """
    The entry point to the inference engine.

    - The engine consists of three components:
        1. TokenizerManager: Tokenizes the requests and sends them to the scheduler.
        2. Scheduler (subprocess): Receives requests from the Tokenizer Manager, schedules batches, forwards them, and sends the output tokens to the Detokenizer Manager.
        3. DetokenizerManager (subprocess): Detokenizes the output tokens and sends the result back to the Tokenizer Manager.

    Note:
    1. The HTTP server, Engine, and TokenizerManager both run in the main process.
    2. Inter-process communication is done through ICP (each process uses a different port) via the ZMQ library.
    """

    def __init__(self, **kwargs):
        """
        The arguments of this function is the same as `sglang/srt/server_args.py::ServerArgs`.
        Please refer to `ServerArgs` for the documentation.
        """
        if "server_args" in kwargs:
            # Directly load server_args
            server_args = kwargs["server_args"]
        else:
            # Construct server_args from kwargs
            if "log_level" not in kwargs:
                # Do not print logs by default
                kwargs["log_level"] = "error"
            server_args = ServerArgs(**kwargs)

        # Shutdown the subprocesses automatically when the program exists
        atexit.register(self.shutdown)

        # Launch subprocesses
        tokenizer_manager, scheduler_info = _launch_subprocesses(
            server_args=server_args
        )
        self.tokenizer_manager = tokenizer_manager
        self.scheduler_info = scheduler_info

    def generate(
        self,
        # The input prompt. It can be a single prompt or a batch of prompts.
        prompt: Optional[Union[List[str], str]] = None,
        sampling_params: Optional[Union[List[Dict], Dict]] = None,
        # The token ids for text; one can either specify text or input_ids.
        input_ids: Optional[Union[List[List[int]], List[int]]] = None,
        return_logprob: Optional[Union[List[bool], bool]] = False,
        logprob_start_len: Optional[Union[List[int], int]] = None,
        top_logprobs_num: Optional[Union[List[int], int]] = None,
        lora_path: Optional[List[Optional[str]]] = None,
        custom_logit_processor: Optional[Union[List[str], str]] = None,
        stream: bool = False,
    ) -> Union[Dict, Iterator[Dict]]:
        """
        The arguments of this function is the same as `sglang/srt/managers/io_struct.py::GenerateReqInput`.
        Please refer to `GenerateReqInput` for the documentation.
        """
        obj = GenerateReqInput(
            text=prompt,
            input_ids=input_ids,
            sampling_params=sampling_params,
            return_logprob=return_logprob,
            logprob_start_len=logprob_start_len,
            top_logprobs_num=top_logprobs_num,
            lora_path=lora_path,
            custom_logit_processor=custom_logit_processor,
            stream=stream,
        )
        loop = asyncio.get_event_loop()
        generator = self.tokenizer_manager.generate_request(obj, None)

        if stream:

            def generator_wrapper():
                while True:
                    try:
                        chunk = loop.run_until_complete(generator.__anext__())
                        yield chunk
                    except StopAsyncIteration:
                        break

            return generator_wrapper()
        else:
            ret = loop.run_until_complete(generator.__anext__())
            return ret

    async def async_generate(
        self,
        # The input prompt. It can be a single prompt or a batch of prompts.
        prompt: Optional[Union[List[str], str]] = None,
        sampling_params: Optional[Union[List[Dict], Dict]] = None,
        # The token ids for text; one can either specify text or input_ids.
        input_ids: Optional[Union[List[List[int]], List[int]]] = None,
        return_logprob: Optional[Union[List[bool], bool]] = False,
        logprob_start_len: Optional[Union[List[int], int]] = None,
        top_logprobs_num: Optional[Union[List[int], int]] = None,
        lora_path: Optional[List[Optional[str]]] = None,
        custom_logit_processor: Optional[Union[List[str], str]] = None,
        stream: bool = False,
    ) -> Union[Dict, AsyncIterator[Dict]]:
        """
        The arguments of this function is the same as `sglang/srt/managers/io_struct.py::GenerateReqInput`.
        Please refer to `GenerateReqInput` for the documentation.
        """
        obj = GenerateReqInput(
            text=prompt,
            input_ids=input_ids,
            sampling_params=sampling_params,
            return_logprob=return_logprob,
            logprob_start_len=logprob_start_len,
            top_logprobs_num=top_logprobs_num,
            lora_path=lora_path,
            stream=stream,
            custom_logit_processor=custom_logit_processor,
        )
        generator = self.tokenizer_manager.generate_request(obj, None)

        if stream is True:
            return generator
        else:
            return await generator.__anext__()

    def encode(
        self,
        prompt: Union[str, List[str], List[Dict], List[List[Dict]]],
    ) -> Dict:
        """
        The arguments of this function is the same as `sglang/srt/managers/io_struct.py::EmbeddingReqInput`.
        Please refer to `EmbeddingReqInput` for the documentation.
        """

        obj = EmbeddingReqInput(text=prompt)
        loop = asyncio.get_event_loop()
        generator = self.tokenizer_manager.generate_request(obj, None)
        ret = loop.run_until_complete(generator.__anext__())
        return ret

    def shutdown(self):
        """Shutdown the engine"""
        kill_process_tree(os.getpid(), include_parent=False)

    def start_profile(self):
        self.tokenizer_manager.start_profile()

    def stop_profile(self):
        self.tokenizer_manager.stop_profile()

    def get_server_info(self):
        return {
            **dataclasses.asdict(self.tokenizer_manager.server_args),  # server args
            **self.scheduler_info,
            "version": __version__,
        }

    def init_weights_update_group(
        self,
        master_address: str,
        master_port: int,
        rank_offset: int,
        world_size: int,
        group_name: str,
        backend: str = "nccl",
    ):
        """Initialize parameter update group."""
        obj = InitWeightsUpdateGroupReqInput(
            master_address=master_address,
            master_port=master_port,
            rank_offset=rank_offset,
            world_size=world_size,
            group_name=group_name,
            backend=backend,
        )
        loop = asyncio.get_event_loop()
        return loop.run_until_complete(
            self.tokenizer_manager.init_weights_update_group(obj, None)
        )

    def update_weights_from_distributed(self, name: str, dtype, shape):
        """Update weights from distributed source."""
        obj = UpdateWeightsFromDistributedReqInput(
            name=name,
            dtype=dtype,
            shape=shape,
        )
        loop = asyncio.get_event_loop()
        return loop.run_until_complete(
            self.tokenizer_manager.update_weights_from_distributed(obj, None)
        )

    def update_weights_from_tensor(self, named_tensors: List[Tuple[str, torch.Tensor]]):
        """Update weights from distributed source."""
        obj = UpdateWeightsFromTensorReqInput(
            serialized_named_tensors=MultiprocessingSerializer.serialize(named_tensors)
        )
        loop = asyncio.get_event_loop()
        return loop.run_until_complete(
            self.tokenizer_manager.update_weights_from_tensor(obj, None)
        )

    def get_weights_by_name(self, name: str, truncate_size: int = 100):
        """Get weights by parameter name."""
        obj = GetWeightsByNameReqInput(name=name, truncate_size=truncate_size)
        loop = asyncio.get_event_loop()
        return loop.run_until_complete(
            self.tokenizer_manager.get_weights_by_name(obj, None)
        )

    def release_memory_occupation(self):
        """Release GPU occupation temporarily."""
        obj = ReleaseMemoryOccupationReqInput()
        loop = asyncio.get_event_loop()
        return loop.run_until_complete(
            self.tokenizer_manager.release_memory_occupation(obj, None)
        )

    def resume_memory_occupation(self):
        """Resume GPU occupation."""
        obj = ResumeMemoryOccupationReqInput()
        loop = asyncio.get_event_loop()
        return loop.run_until_complete(
            self.tokenizer_manager.resume_memory_occupation(obj, None)
        )


def _set_envs_and_config(server_args: ServerArgs):
    # Set global environments
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
    os.environ["NCCL_CUMEM_ENABLE"] = "0"
    os.environ["NCCL_NVLS_ENABLE"] = "0"
    os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
    os.environ["CUDA_DEVICE_MAX_CONNECTIONS"] = "4"

    # Set prometheus env vars
    if server_args.enable_metrics:
        set_prometheus_multiproc_dir()

    # Set ulimit
    set_ulimit()

    # Fix triton bugs
    if server_args.tp_size * server_args.dp_size > 1:
        # FIXME: remove this after https://github.com/triton-lang/triton/pull/4295 is used as a dependency.
        maybe_set_triton_cache_manager()

    # Check flashinfer version
    if server_args.attention_backend == "flashinfer":
        assert_pkg_version(
            "flashinfer",
            "0.1.6",
            "Please uninstall the old version and "
            "reinstall the latest version by following the instructions "
            "at https://docs.flashinfer.ai/installation.html.",
        )

    # Register the signal handler.
    # The child processes will send SIGQUIT to this process when any error happens
    # This process then clean up the whole process tree
    def sigquit_handler(signum, frame):
        logger.error(
            "Received sigquit from a child proces. It usually means the child failed."
        )
        kill_process_tree(os.getpid())

    signal.signal(signal.SIGQUIT, sigquit_handler)

    # Set mp start method
    mp.set_start_method("spawn", force=True)


def _launch_subprocesses(server_args: ServerArgs) -> Tuple[TokenizerManager, Dict]:
    """
    Launch the TokenizerManager in the main process, the Scheduler in a subprocess, and the DetokenizerManager in another subprocess.
    """
    # Configure global environment
    configure_logger(server_args)
    server_args.check_server_args()
    _set_envs_and_config(server_args)

    # Allocate ports for inter-process communications
    port_args = PortArgs.init_new(server_args)
    logger.info(f"{server_args=}")

    # If using model from www.modelscope.cn, first download the model.
    server_args.model_path, server_args.tokenizer_path = prepare_model_and_tokenizer(
        server_args.model_path, server_args.tokenizer_path
    )

    scheduler_procs = []
    if server_args.dp_size == 1:
        # Launch tensor parallel scheduler processes
        memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=server_args.enable_memory_saver
        )

        scheduler_pipe_readers = []
        tp_size_per_node = server_args.tp_size // server_args.nnodes
        tp_rank_range = range(
            tp_size_per_node * server_args.node_rank,
            tp_size_per_node * (server_args.node_rank + 1),
        )
        for tp_rank in tp_rank_range:
            reader, writer = mp.Pipe(duplex=False)
            gpu_id = server_args.base_gpu_id + tp_rank % tp_size_per_node
            proc = mp.Process(
                target=run_scheduler_process,
                args=(server_args, port_args, gpu_id, tp_rank, None, writer),
            )
            with memory_saver_adapter.configure_subprocess():
                proc.start()
            scheduler_procs.append(proc)
            scheduler_pipe_readers.append(reader)
    else:
        # Launch the data parallel controller
        reader, writer = mp.Pipe(duplex=False)
        scheduler_pipe_readers = [reader]
        proc = mp.Process(
            target=run_data_parallel_controller_process,
            args=(server_args, port_args, writer),
        )
        proc.start()
        scheduler_procs.append(proc)

    if server_args.node_rank >= 1:
        # In multi-node cases, non-zero rank nodes do not need to run tokenizer or detokenizer,
        # so they can just wait here.

        for reader in scheduler_pipe_readers:
            data = reader.recv()
            assert data["status"] == "ready"

        if os.getenv("SGLANG_BLOCK_NONZERO_RANK_CHILDREN") == "0":
            # When using `Engine` as a Python API, we don't want to block here.
            return

        for proc in scheduler_procs:
            proc.join()
            logger.error(
                f"Scheduler or DataParallelController {proc.pid} terminated with {proc.exitcode}"
            )
        return

    # Launch detokenizer process
    detoken_proc = mp.Process(
        target=run_detokenizer_process,
        args=(
            server_args,
            port_args,
        ),
    )
    detoken_proc.start()

    # Launch tokenizer process
    tokenizer_manager = TokenizerManager(server_args, port_args)
    if server_args.chat_template:
        load_chat_template_for_openai_api(tokenizer_manager, server_args.chat_template)

    # Wait for the model to finish loading
    scheduler_infos = []
    for i in range(len(scheduler_pipe_readers)):
        try:
            data = scheduler_pipe_readers[i].recv()
        except EOFError:
            logger.error(
                f"Rank {i} scheduler is dead. Please check if there are relevant logs."
            )
            scheduler_procs[i].join()
            logger.error(f"Exit code: {scheduler_procs[i].exitcode}")
            raise

        if data["status"] != "ready":
            raise RuntimeError(
                "Initialization failed. Please see the error messages above."
            )
        scheduler_infos.append(data)

    # Assume all schedulers have the same scheduler_info
    scheduler_info = scheduler_infos[0]
    tokenizer_manager.max_req_input_len = scheduler_info["max_req_input_len"]
    return tokenizer_manager, scheduler_info