test_get_parameter_by_name.py 4.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import gc
import unittest

import numpy as np
import requests
import torch
from transformers import AutoModelForCausalLM

import sglang as sgl
from sglang.test.test_utils import (
    DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    popen_launch_server,
)
from sglang.utils import terminate_process


class TestUpdateWeights(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.hf_model = AutoModelForCausalLM.from_pretrained(
            cls.model, torch_dtype="bfloat16"
        ).to("cuda:0")

    @classmethod
    def tearDownClass(cls):
        del cls.hf_model
        gc.collect()
        torch.cuda.empty_cache()

    def init_backend(self, backend, dp, tp):
        self.engine = None
        self.process = None
        self.backend = backend
        self.dp = dp
        self.tp = tp
        if backend == "Engine":
            self.engine = sgl.Engine(
                model_path=self.model,
                random_seed=42,
                tp_size=self.tp,
                dp_size=self.dp,
                mem_fraction_static=0.85,
            )
        else:
            self.process = popen_launch_server(
                self.model,
                self.base_url,
                timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
                other_args=(
                    "--tp-size",
                    str(tp),
                    "--dp-size",
                    str(dp),
                ),
            )

    def close_engine_and_server(self):
        if self.engine:
            self.engine.shutdown()
        if self.process:
            terminate_process(self.process)

    def assert_update_weights_all_close(self, param_name, truncate_size):
        print(
            f"param_name: {param_name}, backend: {self.backend}, dp: {self.dp}, tp: {self.tp}"
        )
        param = self.hf_model.get_parameter(param_name)[:truncate_size]
        param_np = param.cpu().detach().float().numpy()

        if self.backend == "Engine":
            engine_ret = self.engine.get_weights_by_name(param_name, truncate_size)
            engine_ret = self._process_return(engine_ret)
            np.testing.assert_allclose(engine_ret, param_np, rtol=1e-5, atol=1e-5)

        if self.backend == "Runtime":
            runtime_ret = requests.get(
                f"{self.base_url}/get_weights_by_name",
                json={"name": param_name, "truncate_size": truncate_size},
            ).json()
            runtime_ret = self._process_return(runtime_ret)
            np.testing.assert_allclose(runtime_ret, param_np, rtol=1e-5, atol=1e-5)

    @staticmethod
    def _process_return(ret):
        if isinstance(ret, list) and len(ret) == 2:
            print(f"running assert_allclose on data parallel")
            np.testing.assert_allclose(ret[0], ret[1])
            return np.array(ret[0])
        return np.array(ret)

    def test_update_weights_unexist_model(self):
        test_suits = [("Engine", 1, 1), ("Runtime", 1, 1)]

        if torch.cuda.device_count() >= 2:
            test_suits.append(("Engine", 1, 2))
            test_suits.append(("Runtime", 2, 1))

        if torch.cuda.device_count() >= 4:
            test_suits.extend([("Engine", 2, 2), ("Runtime", 2, 2)])

        parameters = [
            "model.embed_tokens.weight",
            "model.layers.0.input_layernorm.weight",
            "model.layers.1.self_attn.q_proj.weight",
            "model.layers.2.self_attn.k_proj.weight",
            "model.layers.3.self_attn.v_proj.weight",
            "model.layers.4.self_attn.o_proj.weight",
            "model.layers.5.mlp.gate_proj.weight",
            "model.layers.6.mlp.up_proj.weight",
            "model.layers.7.mlp.down_proj.weight",
            "model.layers.8.post_attention_layernorm.weight",
            "model.norm.weight",
            "lm_head.weight",
        ]

        for test_suit in test_suits:
            self.init_backend(*test_suit)
            for param_name in parameters:
                self.assert_update_weights_all_close(param_name, 100)
            self.close_engine_and_server()


if __name__ == "__main__":
    unittest.main()