native_api.ipynb 18.7 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
7
    "# SGLang Native APIs\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
9
    "Apart from the OpenAI compatible APIs, the SGLang Runtime also provides its native server APIs. We introduce the following APIs:\n",
Chayenne's avatar
Chayenne committed
10
    "\n",
Chayenne's avatar
Chayenne committed
11
    "- `/generate` (text generation model)\n",
Chayenne's avatar
Chayenne committed
12
    "- `/get_model_info`\n",
13
    "- `/get_server_info`\n",
Chayenne's avatar
Chayenne committed
14
15
16
    "- `/health`\n",
    "- `/health_generate`\n",
    "- `/flush_cache`\n",
Chayenne's avatar
Chayenne committed
17
    "- `/update_weights`\n",
Chayenne's avatar
Chayenne committed
18
    "- `/encode`(embedding model)\n",
woodx's avatar
woodx committed
19
    "- `/v1/rerank`(cross encoder rerank model)\n",
20
    "- `/classify`(reward model)\n",
21
22
23
    "- `/start_expert_distribution_record`\n",
    "- `/stop_expert_distribution_record`\n",
    "- `/dump_expert_distribution_record`\n",
24
25
    "- `/tokenize`\n",
    "- `/detokenize`\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
26
    "- A full list of these APIs can be found at [http_server.py](https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/entrypoints/http_server.py)\n",
Chayenne's avatar
Chayenne committed
27
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
28
    "We mainly use `requests` to test these APIs in the following examples. You can also use `curl`.\n"
Chayenne's avatar
Chayenne committed
29
30
31
32
33
34
35
36
37
38
39
40
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
41
   "metadata": {},
Chayenne's avatar
Chayenne committed
42
43
   "outputs": [],
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
44
    "from sglang.test.doc_patch import launch_server_cmd\n",
45
46
47
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
    "server_process, port = launch_server_cmd(\n",
48
    "    \"python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0 --log-level warning\"\n",
Chayenne's avatar
Chayenne committed
49
50
    ")\n",
    "\n",
51
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
52
53
54
55
56
57
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
58
    "## Generate (text generation model)\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
59
    "Generate completions. This is similar to the `/v1/completions` in OpenAI API. Detailed parameters can be found in the [sampling parameters](sampling_params.md)."
Chayenne's avatar
Chayenne committed
60
61
62
63
64
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
65
   "metadata": {},
Chayenne's avatar
Chayenne committed
66
67
   "outputs": [],
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
68
69
    "import requests\n",
    "\n",
70
    "url = f\"http://localhost:{port}/generate\"\n",
Chayenne's avatar
Chayenne committed
71
    "data = {\"text\": \"What is the capital of France?\"}\n",
Chayenne's avatar
Chayenne committed
72
73
    "\n",
    "response = requests.post(url, json=data)\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
74
    "print_highlight(response.json())"
Chayenne's avatar
Chayenne committed
75
76
77
78
79
80
81
82
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Get Model Info\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
83
    "Get the information of the model.\n",
Chayenne's avatar
Chayenne committed
84
85
    "\n",
    "- `model_path`: The path/name of the model.\n",
Chayenne's avatar
Chayenne committed
86
    "- `is_generation`: Whether the model is used as generation model or embedding model.\n",
87
    "- `tokenizer_path`: The path/name of the tokenizer.\n",
88
89
    "- `preferred_sampling_params`: The default sampling params specified via `--preferred-sampling-params`. `None` is returned in this example as we did not explicitly configure it in server args.\n",
    "- `weight_version`: This field contains the version of the model weights. This is often used to track changes or updates to the model’s trained parameters."
Chayenne's avatar
Chayenne committed
90
91
92
93
94
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
95
   "metadata": {},
Chayenne's avatar
Chayenne committed
96
97
   "outputs": [],
   "source": [
98
    "url = f\"http://localhost:{port}/get_model_info\"\n",
Chayenne's avatar
Chayenne committed
99
100
101
102
    "\n",
    "response = requests.get(url)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
103
    "assert response_json[\"model_path\"] == \"qwen/qwen2.5-0.5b-instruct\"\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
104
    "assert response_json[\"is_generation\"] is True\n",
105
    "assert response_json[\"tokenizer_path\"] == \"qwen/qwen2.5-0.5b-instruct\"\n",
106
    "assert response_json[\"preferred_sampling_params\"] is None\n",
107
108
109
110
111
    "assert response_json.keys() == {\n",
    "    \"model_path\",\n",
    "    \"is_generation\",\n",
    "    \"tokenizer_path\",\n",
    "    \"preferred_sampling_params\",\n",
112
    "    \"weight_version\",\n",
113
    "}"
Chayenne's avatar
Chayenne committed
114
115
116
117
118
119
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
120
121
122
123
124
125
    "## Get Server Info\n",
    "Gets the server information including CLI arguments, token limits, and memory pool sizes.\n",
    "- Note: `get_server_info` merges the following deprecated endpoints:\n",
    "  - `get_server_args`\n",
    "  - `get_memory_pool_size` \n",
    "  - `get_max_total_num_tokens`"
Chayenne's avatar
Chayenne committed
126
127
128
129
130
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
131
   "metadata": {},
Chayenne's avatar
Chayenne committed
132
133
   "outputs": [],
   "source": [
134
    "url = f\"http://localhost:{port}/get_server_info\"\n",
Chayenne's avatar
Chayenne committed
135
136
137
138
139
140
141
142
143
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
144
145
146
    "## Health Check\n",
    "- `/health`: Check the health of the server.\n",
    "- `/health_generate`: Check the health of the server by generating one token."
Chayenne's avatar
Chayenne committed
147
148
149
150
151
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
152
   "metadata": {},
Chayenne's avatar
Chayenne committed
153
154
   "outputs": [],
   "source": [
155
    "url = f\"http://localhost:{port}/health_generate\"\n",
Chayenne's avatar
Chayenne committed
156
    "\n",
157
    "response = requests.get(url)\n",
Chayenne's avatar
Chayenne committed
158
159
160
161
162
163
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
164
   "metadata": {},
Chayenne's avatar
Chayenne committed
165
166
   "outputs": [],
   "source": [
167
    "url = f\"http://localhost:{port}/health\"\n",
Chayenne's avatar
Chayenne committed
168
169
170
171
172
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
173
174
175
176
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
177
    "## Flush Cache\n",
178
    "\n",
179
    "Flush the radix cache. It will be automatically triggered when the model weights are updated by the `/update_weights` API."
180
181
182
183
184
185
186
187
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
188
    "url = f\"http://localhost:{port}/flush_cache\"\n",
189
    "\n",
190
    "response = requests.post(url)\n",
191
192
193
    "print_highlight(response.text)"
   ]
  },
Chayenne's avatar
Chayenne committed
194
195
196
197
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
198
    "## Update Weights From Disk\n",
Chayenne's avatar
Chayenne committed
199
    "\n",
Chayenne's avatar
Chayenne committed
200
201
202
    "Update model weights from disk without restarting the server. Only applicable for models with the same architecture and parameter size.\n",
    "\n",
    "SGLang support `update_weights_from_disk` API for continuous evaluation during training (save checkpoint to disk and update weights from disk).\n"
Chayenne's avatar
Chayenne committed
203
204
205
206
207
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
208
   "metadata": {},
Chayenne's avatar
Chayenne committed
209
210
211
212
   "outputs": [],
   "source": [
    "# successful update with same architecture and size\n",
    "\n",
213
    "url = f\"http://localhost:{port}/update_weights_from_disk\"\n",
214
    "data = {\"model_path\": \"qwen/qwen2.5-0.5b-instruct\"}\n",
Chayenne's avatar
Chayenne committed
215
216
217
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.text)\n",
218
    "assert response.json()[\"success\"] is True\n",
219
    "assert response.json()[\"message\"] == \"Succeeded to update model weights.\""
Chayenne's avatar
Chayenne committed
220
221
222
223
224
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
225
   "metadata": {},
Chayenne's avatar
Chayenne committed
226
227
   "outputs": [],
   "source": [
228
    "# failed update with different parameter size or wrong name\n",
Chayenne's avatar
Chayenne committed
229
    "\n",
230
    "url = f\"http://localhost:{port}/update_weights_from_disk\"\n",
231
    "data = {\"model_path\": \"qwen/qwen2.5-0.5b-instruct-wrong\"}\n",
Chayenne's avatar
Chayenne committed
232
233
234
235
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
236
    "assert response_json[\"success\"] is False\n",
Chayenne's avatar
Chayenne committed
237
    "assert response_json[\"message\"] == (\n",
238
    "    \"Failed to get weights iterator: \"\n",
239
    "    \"qwen/qwen2.5-0.5b-instruct-wrong\"\n",
240
    "    \" (repository not found).\"\n",
Chayenne's avatar
Chayenne committed
241
242
243
    ")"
   ]
  },
244
245
246
247
248
249
250
251
252
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
Chayenne's avatar
Chayenne committed
253
254
255
256
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
257
    "## Encode (embedding model)\n",
Chayenne's avatar
Chayenne committed
258
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
259
    "Encode text into embeddings. Note that this API is only available for [embedding models](openai_api_embeddings.ipynb) and will raise an error for generation models.\n",
Chayenne's avatar
Chayenne committed
260
    "Therefore, we launch a new server to server an embedding model."
Chayenne's avatar
Chayenne committed
261
262
263
264
265
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
266
   "metadata": {},
Chayenne's avatar
Chayenne committed
267
268
   "outputs": [],
   "source": [
269
    "embedding_process, port = launch_server_cmd(\n",
Chayenne's avatar
Chayenne committed
270
    "    \"\"\"\n",
271
    "python3 -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-1.5B-instruct \\\n",
272
    "    --host 0.0.0.0 --is-embedding --log-level warning\n",
Chayenne's avatar
Chayenne committed
273
274
275
    "\"\"\"\n",
    ")\n",
    "\n",
276
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
277
278
279
280
281
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
282
   "metadata": {},
Chayenne's avatar
Chayenne committed
283
284
285
286
   "outputs": [],
   "source": [
    "# successful encode for embedding model\n",
    "\n",
287
    "url = f\"http://localhost:{port}/encode\"\n",
288
    "data = {\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"text\": \"Once upon a time\"}\n",
Chayenne's avatar
Chayenne committed
289
290
291
292
293
294
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(f\"Text embedding (first 10): {response_json['embedding'][:10]}\")"
   ]
  },
295
296
297
298
299
300
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
301
    "terminate_process(embedding_process)"
302
303
   ]
  },
woodx's avatar
woodx committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## v1/rerank (cross encoder rerank model)\n",
    "Rerank a list of documents given a query using a cross-encoder model. Note that this API is only available for cross encoder model like [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) with `attention-backend` `triton` and `torch_native`.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "reranker_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model-path BAAI/bge-reranker-v2-m3 \\\n",
321
    "    --host 0.0.0.0 --disable-radix-cache --chunked-prefill-size -1 --attention-backend triton --is-embedding --log-level warning\n",
woodx's avatar
woodx committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# compute rerank scores for query and documents\n",
    "\n",
    "url = f\"http://localhost:{port}/v1/rerank\"\n",
    "data = {\n",
    "    \"model\": \"BAAI/bge-reranker-v2-m3\",\n",
    "    \"query\": \"what is panda?\",\n",
    "    \"documents\": [\n",
    "        \"hi\",\n",
    "        \"The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.\",\n",
    "    ],\n",
    "}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "for item in response_json:\n",
    "    print_highlight(f\"Score: {item['score']:.2f} - Document: '{item['document']}'\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(reranker_process)"
   ]
  },
Chayenne's avatar
Chayenne committed
361
362
363
364
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
365
    "## Classify (reward model)\n",
Chayenne's avatar
Chayenne committed
366
    "\n",
367
    "SGLang Runtime also supports reward models. Here we use a reward model to classify the quality of pairwise generations."
Chayenne's avatar
Chayenne committed
368
369
370
371
372
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
373
   "metadata": {},
Chayenne's avatar
Chayenne committed
374
375
376
377
378
   "outputs": [],
   "source": [
    "# Note that SGLang now treats embedding models and reward models as the same type of models.\n",
    "# This will be updated in the future.\n",
    "\n",
379
    "reward_process, port = launch_server_cmd(\n",
Chayenne's avatar
Chayenne committed
380
    "    \"\"\"\n",
381
    "python3 -m sglang.launch_server --model-path Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 --host 0.0.0.0 --is-embedding --log-level warning\n",
Chayenne's avatar
Chayenne committed
382
383
384
    "\"\"\"\n",
    ")\n",
    "\n",
385
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
386
387
388
389
390
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
391
   "metadata": {},
Chayenne's avatar
Chayenne committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "PROMPT = (\n",
    "    \"What is the range of the numeric output of a sigmoid node in a neural network?\"\n",
    ")\n",
    "\n",
    "RESPONSE1 = \"The output of a sigmoid node is bounded between -1 and 1.\"\n",
    "RESPONSE2 = \"The output of a sigmoid node is bounded between 0 and 1.\"\n",
    "\n",
    "CONVS = [\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE1}],\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE2}],\n",
    "]\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\")\n",
    "prompts = tokenizer.apply_chat_template(CONVS, tokenize=False)\n",
    "\n",
411
    "url = f\"http://localhost:{port}/classify\"\n",
Chayenne's avatar
Chayenne committed
412
    "data = {\"model\": \"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\", \"text\": prompts}\n",
Chayenne's avatar
Chayenne committed
413
414
415
416
417
418
    "\n",
    "responses = requests.post(url, json=data).json()\n",
    "for response in responses:\n",
    "    print_highlight(f\"reward: {response['embedding'][0]}\")"
   ]
  },
Chayenne's avatar
Chayenne committed
419
420
  {
   "cell_type": "code",
421
422
   "execution_count": null,
   "metadata": {},
Chayenne's avatar
Chayenne committed
423
424
   "outputs": [],
   "source": [
425
    "terminate_process(reward_process)"
Chayenne's avatar
Chayenne committed
426
   ]
427
  },
428
429
430
431
432
433
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Capture expert selection distribution in MoE models\n",
    "\n",
434
435
436
    "SGLang Runtime supports recording the number of times an expert is selected in a MoE model run for each expert in the model. This is useful when analyzing the throughput of the model and plan for optimization.\n",
    "\n",
    "*Note: We only print out the first 10 lines of the csv below for better readability. Please adjust accordingly if you want to analyze the results more deeply.*"
437
438
439
440
441
442
443
444
445
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "expert_record_server_process, port = launch_server_cmd(\n",
446
    "    \"python3 -m sglang.launch_server --model-path Qwen/Qwen1.5-MoE-A2.7B --host 0.0.0.0 --expert-distribution-recorder-mode stat --log-level warning\"\n",
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = requests.post(f\"http://localhost:{port}/start_expert_distribution_record\")\n",
    "print_highlight(response)\n",
    "\n",
    "url = f\"http://localhost:{port}/generate\"\n",
    "data = {\"text\": \"What is the capital of France?\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.json())\n",
    "\n",
    "response = requests.post(f\"http://localhost:{port}/stop_expert_distribution_record\")\n",
    "print_highlight(response)\n",
    "\n",
    "response = requests.post(f\"http://localhost:{port}/dump_expert_distribution_record\")\n",
471
    "print_highlight(response)"
472
473
474
475
476
477
478
479
480
481
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(expert_record_server_process)"
   ]
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Tokenize/Detokenize Example (Round Trip)\n",
    "\n",
    "This example demonstrates how to use the /tokenize and /detokenize endpoints together. We first tokenize a string, then detokenize the resulting IDs to reconstruct the original text. This workflow is useful when you need to handle tokenization externally but still leverage the server for detokenization."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer_free_server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
    "from sglang.utils import print_highlight\n",
    "\n",
    "base_url = f\"http://localhost:{port}\"\n",
    "tokenize_url = f\"{base_url}/tokenize\"\n",
    "detokenize_url = f\"{base_url}/detokenize\"\n",
    "\n",
    "model_name = \"qwen/qwen2.5-0.5b-instruct\"\n",
    "input_text = \"SGLang provides efficient tokenization endpoints.\"\n",
    "print_highlight(f\"Original Input Text:\\n'{input_text}'\")\n",
    "\n",
    "# --- tokenize the input text ---\n",
    "tokenize_payload = {\n",
    "    \"model\": model_name,\n",
    "    \"prompt\": input_text,\n",
    "    \"add_special_tokens\": False,\n",
    "}\n",
    "try:\n",
    "    tokenize_response = requests.post(tokenize_url, json=tokenize_payload)\n",
    "    tokenize_response.raise_for_status()\n",
    "    tokenization_result = tokenize_response.json()\n",
    "    token_ids = tokenization_result.get(\"tokens\")\n",
    "\n",
    "    if not token_ids:\n",
    "        raise ValueError(\"Tokenization returned empty tokens.\")\n",
    "\n",
    "    print_highlight(f\"\\nTokenized Output (IDs):\\n{token_ids}\")\n",
    "    print_highlight(f\"Token Count: {tokenization_result.get('count')}\")\n",
    "    print_highlight(f\"Max Model Length: {tokenization_result.get('max_model_len')}\")\n",
    "\n",
    "    # --- detokenize the obtained token IDs ---\n",
    "    detokenize_payload = {\n",
    "        \"model\": model_name,\n",
    "        \"tokens\": token_ids,\n",
    "        \"skip_special_tokens\": True,\n",
    "    }\n",
    "\n",
    "    detokenize_response = requests.post(detokenize_url, json=detokenize_payload)\n",
    "    detokenize_response.raise_for_status()\n",
    "    detokenization_result = detokenize_response.json()\n",
    "    reconstructed_text = detokenization_result.get(\"text\")\n",
    "\n",
    "    print_highlight(f\"\\nDetokenized Output (Text):\\n'{reconstructed_text}'\")\n",
    "\n",
    "    if input_text == reconstructed_text:\n",
    "        print_highlight(\n",
    "            \"\\nRound Trip Successful: Original and reconstructed text match.\"\n",
    "        )\n",
    "    else:\n",
    "        print_highlight(\n",
    "            \"\\nRound Trip Mismatch: Original and reconstructed text differ.\"\n",
    "        )\n",
    "\n",
    "except requests.exceptions.RequestException as e:\n",
    "    print_highlight(f\"\\nHTTP Request Error: {e}\")\n",
    "except Exception as e:\n",
    "    print_highlight(f\"\\nAn error occurred: {e}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(tokenizer_free_server_process)"
   ]
Chayenne's avatar
Chayenne committed
580
581
582
583
584
585
586
587
588
589
590
591
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
592
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
593
594
595
  }
 },
 "nbformat": 4,
596
 "nbformat_minor": 4
Chayenne's avatar
Chayenne committed
597
}