bench_awq_dequant.py 3.37 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import itertools
from typing import List, Tuple

import torch
import triton
import triton.testing
from sgl_kernel import awq_dequantize
from vllm import _custom_ops as ops


def vllm_awq_dequantize(
    qweight: torch.Tensor, scales: torch.Tensor, qzeros: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
    return ops.awq_dequantize(qweight, scales, qzeros, 0, 0, 0)


def sglang_awq_dequantize(
    qweight: torch.Tensor, scales: torch.Tensor, qzeros: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:

    return awq_dequantize(qweight, scales, qzeros)


def calculate_diff(qweight_row: int, qweight_col: int):
    """Calculate difference between VLLM and SGLang implementations."""
    device = torch.device("cuda")
    qweight = torch.randint(
        0,
        torch.iinfo(torch.int32).max,
        (qweight_row, qweight_col),
        dtype=torch.int32,
        device=device,
    )
    group_size = qweight_row
    scales_row = qweight_row // group_size
    scales_col = qweight_col * 8
    scales = torch.rand(scales_row, scales_col, dtype=torch.float16, device=device)
    qzeros = torch.randint(
        0,
        torch.iinfo(torch.int32).max,
        (scales_row, qweight_col),
        dtype=torch.int32,
        device=device,
    )

    vllm_out = vllm_awq_dequantize(qweight, scales, qzeros)
    sglang_out = sglang_awq_dequantize(qweight, scales, qzeros)

    output_diff = torch.abs(vllm_out.float() - sglang_out.float()).mean().item()

    if torch.allclose(
        vllm_out.to(torch.float32), sglang_out.to(torch.float32), rtol=1e-3, atol=1e-5
    ):
        print("✅ All implementations match")
    else:
        print("❌ Implementations differ")


qweight_row_range = [3584, 18944, 128, 256, 512, 1024]
qweight_cols_range = [448, 576, 4736, 16, 32, 64, 128]

configs = list(itertools.product(qweight_row_range, qweight_cols_range))


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=["qweight_row", "qweight_col"],
        x_vals=configs,
        line_arg="provider",
        line_vals=["vllm", "sglang"],
        line_names=["VLLM", "SGL Kernel"],
        styles=[("blue", "-"), ("green", "-")],
        ylabel="us",
        plot_name="awq-dequantize-performance",
        args={},
    )
)
def benchmark(qweight_row, qweight_col, provider):
    dtype = torch.float16
    device = torch.device("cuda")
    qweight = torch.randint(
        0,
        torch.iinfo(torch.int32).max,
        (qweight_row, qweight_col),
        dtype=torch.int32,
        device=device,
    )
    group_size = qweight_row
    scales_row = qweight_row // group_size
    scales_col = qweight_col * 8
    scales = torch.rand(scales_row, scales_col, dtype=torch.float16, device=device)
    qzeros = torch.randint(
        0,
        torch.iinfo(torch.int32).max,
        (scales_row, qweight_col),
        dtype=torch.int32,
        device=device,
    )

    quantiles = [0.5, 0.2, 0.8]

    if provider == "vllm":
        fn = lambda: vllm_awq_dequantize(
            qweight.clone(), scales.clone(), qzeros.clone()
        )
    elif provider == "sglang":
        fn = lambda: sglang_awq_dequantize(
            qweight.clone(), scales.clone(), qzeros.clone()
        )

    ms, min_ms, max_ms = triton.testing.do_bench(fn, quantiles=quantiles)

    return 1000 * ms, 1000 * max_ms, 1000 * min_ms


if __name__ == "__main__":
    calculate_diff(qweight_row=3584, qweight_col=448)
    benchmark.run(print_data=True)