bench_activation.py 5.06 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Benchmarks SGLang kernels versus vLLM across
# (kernel, dtype, batch_size, seq_len, dim) and prints speed-up.
import argparse
import itertools
import re
from typing import List, Tuple

import sgl_kernel
import torch
import torch.nn.functional as F
import triton
import triton.testing
from sgl_kernel import gelu_quick  # activation-only kernel
from sgl_kernel import gelu_and_mul, gelu_tanh_and_mul, silu_and_mul
from vllm import _custom_ops as vllm_ops

if not hasattr(vllm_ops, "silu_and_mul"):
    vllm_ops = torch.ops._C


def str2int_list(arg: str) -> List[int]:
    if arg in ("", None):
        return []
    if re.fullmatch(r"\d+(,\d+)*", arg.strip()) is None:
        raise argparse.ArgumentTypeError(f"Bad int list: {arg}")
    return [int(x) for x in arg.split(",")]


def calculate_diff(
    kernel: str, dtype: torch.dtype, batch_size: int, seq_len: int, dim: int
) -> bool:
    """Compare vLLM with SGLang for one shape."""
    device = torch.device("cuda")

    # activation-only quick GELU
    if kernel == "gelu_quick":
        x = torch.randn(batch_size, seq_len, dim, dtype=dtype, device=device)
        ref_out = torch.zeros_like(x)
        getattr(vllm_ops, kernel)(ref_out, x)
        test_out = getattr(sgl_kernel, kernel)(x)
    # fused activation x mul kernels
    else:
        x = torch.randn(batch_size, seq_len, 2 * dim, dtype=dtype, device=device)
        ref_out = torch.zeros(batch_size, seq_len, dim, dtype=dtype, device=device)
        getattr(vllm_ops, kernel)(ref_out, x)
        test_out = getattr(sgl_kernel, kernel)(x)

    ok = torch.allclose(ref_out, test_out, rtol=1e-3, atol=1e-5)
    tag = "✅ match" if ok else "❌ mismatch"
    print(
        f"[{kernel:14s} | {str(dtype):9s} | B={batch_size:3d} | "
        f"L={seq_len:3d} | D={dim:5d}] {tag}"
    )
    return ok


kernels = ["silu_and_mul", "gelu_and_mul", "gelu_tanh_and_mul", "gelu_quick"]
dtypes = [torch.float16, torch.bfloat16]


def make_configs(bsizes: List[int], slens: List[int], dims_: List[int]) -> List[Tuple]:
    return list(itertools.product(kernels, dtypes, bsizes, slens, dims_))


default_batch_sizes = [2**i for i in range(0, 5, 2)]  # 1,4,16
default_seq_lens = [2**i for i in range(0, 8, 2)]  # 1,4,16,64
default_dims = [2**i for i in range(7, 15)]  # 128...16384


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=["kernel", "dtype", "batch_size", "seq_len", "dim"],
        x_vals=[],
        line_arg="provider",
        line_vals=["vllm", "sglang", "speedup"],
        line_names=["vLLM", "SGL Kernel", "Speed-up (x)"],
        styles=[("blue", "-"), ("green", "-"), ("red", "--")],
        ylabel="µs (median)  or  × (speed-up)",
        plot_name="activation-performance",
        args={},
    )
)
def benchmark(kernel, dtype, batch_size, seq_len, dim, provider):
    device = torch.device("cuda")
    in_mult = 1 if kernel == "gelu_quick" else 2
    x = torch.randn(batch_size, seq_len, in_mult * dim, dtype=dtype, device=device)
    y0 = torch.zeros(batch_size, seq_len, dim, dtype=dtype, device=device)

    vllm_kernel = getattr(vllm_ops, kernel)
    sglang_kernel = getattr(sgl_kernel, kernel)

    def baseline():
        tmp = y0.clone()
        vllm_kernel(tmp, x)
        return tmp

    def sglang():
        return sglang_kernel(x)

    # one-time correctness check
    if provider == "vllm" and not calculate_diff(
        kernel, dtype, batch_size, seq_len, dim
    ):
        raise ValueError("Mismatch – abort benchmark")

    # timing helper
    def timed(fn):
        for _ in range(5):
            fn()
        torch.cuda.synchronize()
        ms, qmin, qmax = triton.testing.do_bench(fn, quantiles=[0.5, 0.2, 0.8])
        return 1000 * ms, 1000 * qmax, 1000 * qmin

    if provider == "vllm":
        return timed(baseline)
    if provider == "sglang":
        return timed(sglang)

    # provider == "speedup"
    t_ref, _, _ = timed(baseline)
    t_sgl, _, _ = timed(sglang)
    spd = t_ref / t_sgl
    return (spd, spd, spd)


if __name__ == "__main__":
    p = argparse.ArgumentParser("Activation kernel benchmark")
    p.add_argument("--batch_sizes", type=str2int_list, default=default_batch_sizes)
    p.add_argument("--seq_lens", type=str2int_list, default=default_seq_lens)
    p.add_argument("--dims", type=str2int_list, default=default_dims)
    p.add_argument("--verify_only", action="store_true")
    args = p.parse_args()

    # coerce lists
    if isinstance(args.batch_sizes, str):
        args.batch_sizes = str2int_list(args.batch_sizes)
    if isinstance(args.seq_lens, str):
        args.seq_lens = str2int_list(args.seq_lens)
    if isinstance(args.dims, str):
        args.dims = str2int_list(args.dims)

    # patch perf_report grid
    benchmark_grid = make_configs(args.batch_sizes, args.seq_lens, args.dims)
    if hasattr(benchmark, "benchmarks"):
        benchmark.benchmarks.x_vals = benchmark_grid
    else:
        benchmark.benchmark.x_vals = benchmark_grid

    if args.verify_only:
        ok = calculate_diff("gelu_quick", torch.float16, 1, 1, args.dims[0])
        print("✅ sanity pass" if ok else "❌ mismatch")
    else:
        benchmark.run(print_data=True)