test_input_embeddings.py 4.25 KB
Newer Older
Rin Intachuen's avatar
Rin Intachuen committed
1
2
3
4
5
6
import json
import unittest

import requests
from transformers import AutoModelForCausalLM, AutoTokenizer

7
from sglang.srt.utils import kill_process_tree
Rin Intachuen's avatar
Rin Intachuen committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from sglang.test.test_utils import (
    DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    popen_launch_server,
)


class TestInputEmbeds(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.tokenizer = AutoTokenizer.from_pretrained(cls.model)
        cls.ref_model = AutoModelForCausalLM.from_pretrained(cls.model)
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
27
            other_args=["--disable-radix", "--cuda-graph-max-bs", 4],
Rin Intachuen's avatar
Rin Intachuen committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        )
        cls.texts = [
            "The capital of France is",
            "What is the best time of year to visit Japan for cherry blossoms?",
        ]

    def generate_input_embeddings(self, text):
        """Generate input embeddings for a given text."""
        input_ids = self.tokenizer(text, return_tensors="pt")["input_ids"]
        embeddings = self.ref_model.get_input_embeddings()(input_ids)
        return embeddings.squeeze().tolist()  # Convert tensor to a list for API use

    def send_request(self, payload):
        """Send a POST request to the API and return the response."""
        response = requests.post(
            self.base_url + "/generate",
            json=payload,
            timeout=30,  # Set a reasonable timeout for the API request
        )
        if response.status_code == 200:
            return response.json()
        return {
            "error": f"Request failed with status {response.status_code}: {response.text}"
        }

    def test_text_based_response(self):
        """Print API response using text-based input."""
        for text in self.texts:
            payload = {
                "model": self.model,
                "text": text,
                "sampling_params": {"temperature": 0, "max_new_tokens": 50},
            }
            response = self.send_request(payload)
            print(
                f"Text Input: {text}\nResponse: {json.dumps(response, indent=2)}\n{'-' * 80}"
            )

    def test_embedding_based_response(self):
        """Print API response using input embeddings."""
        for text in self.texts:
            embeddings = self.generate_input_embeddings(text)
            payload = {
                "model": self.model,
                "input_embeds": embeddings,
                "sampling_params": {"temperature": 0, "max_new_tokens": 50},
            }
            response = self.send_request(payload)
            print(
                f"Embeddings Input (for text '{text}'):\nResponse: {json.dumps(response, indent=2)}\n{'-' * 80}"
            )

    def test_compare_text_vs_embedding(self):
        """Print responses for both text-based and embedding-based inputs."""
        for text in self.texts:
            # Text-based payload
            text_payload = {
                "model": self.model,
                "text": text,
                "sampling_params": {"temperature": 0, "max_new_tokens": 50},
            }
            # Embedding-based payload
            embeddings = self.generate_input_embeddings(text)
            embed_payload = {
                "model": self.model,
                "input_embeds": embeddings,
                "sampling_params": {"temperature": 0, "max_new_tokens": 50},
            }
            # Get responses
            text_response = self.send_request(text_payload)
            embed_response = self.send_request(embed_payload)
            # Print responses
            print(
                f"Text Input: {text}\nText-Based Response: {json.dumps(text_response, indent=2)}\n"
            )
            print(
                f"Embeddings Input (for text '{text}'):\nEmbedding-Based Response: {json.dumps(embed_response, indent=2)}\n{'-' * 80}"
            )
106
107
            # This is flaky, so we skip this temporarily
            # self.assertEqual(text_response["text"], embed_response["text"])
Rin Intachuen's avatar
Rin Intachuen committed
108
109
110

    @classmethod
    def tearDownClass(cls):
111
        kill_process_tree(cls.process.pid)
Rin Intachuen's avatar
Rin Intachuen committed
112
113
114
115


if __name__ == "__main__":
    unittest.main()