test_nightly_vlms_perf.py 5.02 KB
Newer Older
Mick's avatar
Mick committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import subprocess
import unittest
import warnings

from sglang.bench_one_batch_server import BenchmarkResult
from sglang.srt.utils import kill_process_tree
from sglang.test.test_utils import (
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    _parse_int_list_env,
    is_in_ci,
    parse_models,
    popen_launch_server,
    write_github_step_summary,
)

PROFILE_DIR = "performance_profiles_vlms"

MODEL_DEFAULTS = [
    # Keep conservative defaults. Can be overridden by env NIGHTLY_VLM_MODELS
    "Qwen/Qwen2.5-VL-7B-Instruct",
    "google/gemma-3-27b-it",
    # "OpenGVLab/InternVL2_5-2B",
    # buggy in official transformers impl
    # "openbmb/MiniCPM-V-2_6",
]


class TestNightlyVLMModelsPerformance(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        warnings.filterwarnings(
            "ignore", category=ResourceWarning, message="unclosed.*socket"
        )
        cls.models = parse_models(
            os.environ.get("NIGHTLY_VLM_MODELS", ",".join(MODEL_DEFAULTS))
        )
        cls.base_url = DEFAULT_URL_FOR_TEST

        cls.batch_sizes = _parse_int_list_env("NIGHTLY_VLM_BATCH_SIZES", "1,1,2,8,16")
        cls.input_lens = tuple(_parse_int_list_env("NIGHTLY_VLM_INPUT_LENS", "4096"))
        cls.output_lens = tuple(_parse_int_list_env("NIGHTLY_VLM_OUTPUT_LENS", "512"))
        cls.full_report = f"## {cls.__name__}\n" + BenchmarkResult.help_str()

    def test_bench_one_batch(self):
        all_benchmark_results = []

        for model in self.models:
            benchmark_results = []
            with self.subTest(model=model):
                process = popen_launch_server(
                    model=model,
                    base_url=self.base_url,
                    other_args=["--mem-fraction-static=0.7"],
                    timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
                )
                try:
                    # Run bench_one_batch_server against the launched server
                    profile_filename = f"{model.replace('/', '_')}"
                    # path for this run
                    profile_path_prefix = os.path.join(PROFILE_DIR, profile_filename)

                    # JSON output file for this model
                    json_output_file = f"results_{model.replace('/', '_')}.json"

                    command = [
                        "python3",
                        "-m",
                        "sglang.bench_one_batch_server",
                        f"--model={model}",
                        "--base-url",
                        self.base_url,
                        "--batch-size",
                        *[str(x) for x in self.batch_sizes],
                        "--input-len",
                        *[str(x) for x in self.input_lens],
                        "--output-len",
                        *[str(x) for x in self.output_lens],
                        "--trust-remote-code",
                        "--dataset-name=mmmu",
                        "--profile",
                        "--profile-by-stage",
                        f"--profile-filename-prefix={profile_path_prefix}",
                        "--show-report",
                        f"--output-path={json_output_file}",
                        "--no-append-to-github-summary",
                    ]

                    print(f"Running command: {' '.join(command)}")
                    result = subprocess.run(command, capture_output=True, text=True)

                    if result.returncode != 0:
                        print(f"Error running benchmark for {model} with batch size:")
                        print(result.stderr)
                        # Continue to next batch size even if one fails
                        continue

                    print(f"Output for {model} with batch size:")
                    print(result.stdout)

                    # Load and deserialize JSON results
                    if os.path.exists(json_output_file):
                        import json

                        with open(json_output_file, "r") as f:
                            json_data = json.load(f)

                        # Convert JSON data to BenchmarkResult objects
                        for data in json_data:
                            benchmark_result = BenchmarkResult(**data)
                            all_benchmark_results.append(benchmark_result)
                            benchmark_results.append(benchmark_result)

                        print(
                            f"Loaded {len(benchmark_results)} benchmark results from {json_output_file}"
                        )

                    else:
                        print(f"Warning: JSON output file {json_output_file} not found")

                finally:
                    kill_process_tree(process.pid)

                report_part = BenchmarkResult.generate_markdown_report(
                    PROFILE_DIR, benchmark_results
                )
                self.full_report += report_part + "\n"

        if is_in_ci():
            write_github_step_summary(self.full_report)


if __name__ == "__main__":
    unittest.main()