deepseek.md 14.8 KB
Newer Older
Yineng Zhang's avatar
Yineng Zhang committed
1
# DeepSeek Usage
2

3
4
5
6
SGLang provides many optimizations specifically designed for the DeepSeek models, making it the inference engine recommended by the official [DeepSeek team](https://github.com/deepseek-ai/DeepSeek-V3/tree/main?tab=readme-ov-file#62-inference-with-sglang-recommended) from Day 0.

This document outlines current optimizations for DeepSeek.
Additionally, the SGLang team is actively developing enhancements following this [Roadmap](https://github.com/sgl-project/sglang/issues/2591).
7

8
## Launch DeepSeek V3 with SGLang
9

10
To run DeepSeek V3/R1 models, the requirements are as follows:
Chayenne's avatar
Chayenne committed
11

12
13
14
15
16
17
18
19
20
21
22
| Weight Type | Configuration |
|------------|-------------------|
| **Full precision FP8**<br>*(recommended)* | 8 x H200 |
| | 8 x MI300X |
| | 2 x 8 x H100/800/20 |
| **Full precision BF16** | 2 x 8 x H200 |
| | 2 x 8 x MI300X |
| | 4 x 8 x H100/800/20 |
| | 4 x 8 x A100/A800 |
| **Quantized weights (AWQ)** | 8 x H100/800/20 |
| | 8 x A100/A800 |
23
| **Quantized weights (int8)** | 16 x A100/800 |
24
| | 32 x L40S |
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

<style>
.md-typeset__table {
  width: 100%;
}

.md-typeset__table table {
  border-collapse: collapse;
  margin: 1em 0;
  border: 2px solid var(--md-typeset-table-color);
  table-layout: fixed;
}

.md-typeset__table th {
  border: 1px solid var(--md-typeset-table-color);
  border-bottom: 2px solid var(--md-typeset-table-color);
  background-color: var(--md-default-bg-color--lighter);
  padding: 12px;
}

.md-typeset__table td {
  border: 1px solid var(--md-typeset-table-color);
  padding: 12px;
}

.md-typeset__table tr:nth-child(2n) {
  background-color: var(--md-default-bg-color--lightest);
}
</style>
Chayenne's avatar
Chayenne committed
54
55
56
57
58
59
60
61

Detailed commands for reference:

- [8 x H200](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#using-docker-recommended)
- [8 x MI300X](https://docs.sglang.ai/references/amd.html#running-deepseek-v3)
- [2 x 8 x H200](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-two-h208-nodes)
- [4 x 8 x A100](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-four-a1008-nodes)
- [8 x A100 (AWQ)](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-8-a100a800-with-awq-quantization)
Yineng Zhang's avatar
Yineng Zhang committed
62
- [16 x A100 (int8)](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-16-a100a800-with-int8-quantization)
63
- [32 x L40S (int8)](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-32-l40s-with-int8-quantization)
64
65

### Download Weights
66
If you encounter errors when starting the server, ensure the weights have finished downloading. It's recommended to download them beforehand or restart multiple times until all weights are downloaded. Please refer to [DeepSeek V3](https://huggingface.co/deepseek-ai/DeepSeek-V3-Base#61-inference-with-deepseek-infer-demo-example-only) official guide to download the weights.
67

68
### Caching `torch.compile`
69
The DeepSeek series have huge model weights, it takes some time to compile the model with `torch.compile` for the first time if you have added the flag `--enable-torch-compile`. You can refer [here](https://docs.sglang.ai/backend/hyperparameter_tuning.html#try-advanced-options) to optimize the caching of compilation results, so that the cache can be used to speed up the next startup.
70

71
72
### Launch with one node of 8 x H200
Please refer to [the example](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#using-docker-recommended). **Note that Deepseek V3 is already in FP8. So we should not run it with any quantization arguments like `--quantization fp8 --kv-cache-dtype fp8_e5m2`.
73
74
75
76
77
78
79

### Running examples on Multi-node

- [Serving with two H20*8 nodes](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-two-h208-nodes).

- [Serving with two H200*8 nodes and docker](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-two-h2008-nodes-and-docker).

Jhin's avatar
Jhin committed
80
81
- [Serving with four A100*8 nodes](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-four-a1008-nodes).

Yineng Zhang's avatar
Yineng Zhang committed
82
83
84
85
86
87
88
89
## Optimizations

### Multi-head Latent Attention (MLA) Throughput Optimizations

**Description**: [MLA](https://arxiv.org/pdf/2405.04434) is an innovative attention mechanism introduced by the DeepSeek team, aimed at improving inference efficiency. SGLang has implemented specific optimizations for this, including:

- **Weight Absorption**: By applying the associative law of matrix multiplication to reorder computation steps, this method balances computation and memory access and improves efficiency in the decoding phase.

90
- **MLA Attention Backends**: Currently SGLang supports different optimized MLA attention backends, including [FlashAttention3](https://github.com/Dao-AILab/flash-attention), [Flashinfer](https://docs.flashinfer.ai/api/mla.html), and [Triton](https://github.com/triton-lang/triton) backends. The default FA3 provides good performance across wide workloads.
Yineng Zhang's avatar
Yineng Zhang committed
91
92
93
94
95

- **FP8 Quantization**: W8A8 FP8 and KV Cache FP8 quantization enables efficient FP8 inference. Additionally, we have implemented Batched Matrix Multiplication (BMM) operator to facilitate FP8 inference in MLA with weight absorption.

- **CUDA Graph & Torch.compile**: Both MLA and Mixture of Experts (MoE) are compatible with CUDA Graph and Torch.compile, which reduces latency and accelerates decoding speed for small batch sizes.

96
97
- **Chunked Prefix Cache**: Chunked prefix cache optimization can increase throughput by cutting prefix cache into chunks, processing them with multi-head attention and merging their states. Its improvement can be significant when doing chunked prefill on long sequences. Currently this optimization is only available for FlashAttention3 backend.

Ke Bao's avatar
Ke Bao committed
98
Overall, with these optimizations, we have achieved up to **7x** acceleration in output throughput compared to the previous version.
Yineng Zhang's avatar
Yineng Zhang committed
99
100
101
102
103

<p align="center">
  <img src="https://lmsys.org/images/blog/sglang_v0_3/deepseek_mla.svg" alt="Multi-head Latent Attention for DeepSeek Series Models">
</p>

104
**Usage**: MLA optimization is enabled by default.
Yineng Zhang's avatar
Yineng Zhang committed
105
106
107
108
109

**Reference**: Check [Blog](https://lmsys.org/blog/2024-09-04-sglang-v0-3/#deepseek-multi-head-latent-attention-mla-throughput-optimizations) and [Slides](https://github.com/sgl-project/sgl-learning-materials/blob/main/slides/lmsys_1st_meetup_deepseek_mla.pdf) for more details.

### Data Parallelism Attention

110
**Description**: This optimization involves data parallelism (DP) for the MLA attention mechanism of DeepSeek Series Models, which allows for a significant reduction in the KV cache size, enabling larger batch sizes. Each DP worker independently handles different types of batches (prefill, decode, idle), which are then synchronized before and after processing through the Mixture-of-Experts (MoE) layer. If you do not use DP attention, KV cache will be duplicated among all TP ranks.
Yineng Zhang's avatar
Yineng Zhang committed
111
112
113
114
115

<p align="center">
  <img src="https://lmsys.org/images/blog/sglang_v0_4/dp_attention.svg" alt="Data Parallelism Attention for DeepSeek Series Models">
</p>

Ke Bao's avatar
Ke Bao committed
116
With data parallelism attention enabled, we have achieved up to **1.9x** decoding throughput improvement compared to the previous version.
Yineng Zhang's avatar
Yineng Zhang committed
117
118
119
120
121

<p align="center">
  <img src="https://lmsys.org/images/blog/sglang_v0_4/deepseek_coder_v2.svg" alt="Data Parallelism Attention Performance Comparison">
</p>

122
**Usage**:
123
124
- Append `--enable-dp-attention --tp 8 --dp 8` to the server arguments when using 8 H200 GPUs. This optimization improves peak throughput in high batch size scenarios where the server is limited by KV cache capacity. However, it is not recommended for low-latency, small-batch use cases.
- DP and TP attention can be flexibly combined. For example, to deploy DeepSeek-V3/R1 on 2 nodes with 8 H100 GPUs each, you can specify `--enable-dp-attention --tp 16 --dp 2`. This configuration runs attention with 2 DP groups, each containing 8 TP GPUs.
Ke Bao's avatar
Ke Bao committed
125

Yineng Zhang's avatar
Yineng Zhang committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
**Reference**: Check [Blog](https://lmsys.org/blog/2024-12-04-sglang-v0-4/#data-parallelism-attention-for-deepseek-models).

### Multi Node Tensor Parallelism

**Description**: For users with limited memory on a single node, SGLang supports serving DeepSeek Series Models, including DeepSeek V3, across multiple nodes using tensor parallelism. This approach partitions the model parameters across multiple GPUs or nodes to handle models that are too large for one node's memory.

**Usage**: Check [here](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-2-h208) for usage examples.

### Block-wise FP8

**Description**: SGLang implements block-wise FP8 quantization with two key optimizations:

- **Activation**: E4M3 format using per-token-per-128-channel sub-vector scales with online casting.

- **Weight**: Per-128x128-block quantization for better numerical stability.

142
- **DeepGEMM**: The [DeepGEMM](https://github.com/deepseek-ai/DeepGEMM) kernel library optimized for FP8 matrix multiplications.
143

144
145
146
147
148
149
150
**Usage**: The activation and weight optimization above are turned on by default for DeepSeek V3 models. DeepGEMM is enabled by default on NVIDIA Hopper GPUs and disabled by default on other devices. DeepGEMM can also be manually turned off by setting the environment variable `SGL_ENABLE_JIT_DEEPGEMM=0`.

Before serving the DeepSeek model, precompile the DeepGEMM kernels using:
```bash
python3 -m sglang.compile_deep_gemm --model deepseek-ai/DeepSeek-V3 --tp 8 --trust-remote-code
```
The precompilation process typically takes around 10 minutes to complete.
Ke Bao's avatar
Ke Bao committed
151
152
153
154
155

### Multi-token Prediction
**Description**: SGLang implements DeepSeek V3 Multi-Token Prediction (MTP) based on [EAGLE speculative decoding](https://docs.sglang.ai/backend/speculative_decoding.html#EAGLE-Decoding). With this optimization, the decoding speed can be improved by **1.8x** for batch size 1 and **1.5x** for batch size 32 respectively on H200 TP8 setting.

**Usage**:
156
Add arguments `--speculative-algorithm`, `--speculative-num-steps`, `--speculative-eagle-topk` and `--speculative-num-draft-tokens` to enable this feature. For example:
Ke Bao's avatar
Ke Bao committed
157
```
158
python3 -m sglang.launch_server --model-path deepseek-ai/DeepSeek-V3-0324 --speculative-algorithm EAGLE --speculative-num-steps 1 --speculative-eagle-topk 1 --speculative-num-draft-tokens 2 --trust-remote-code --tp 8
Ke Bao's avatar
Ke Bao committed
159
```
fzyzcjy's avatar
fzyzcjy committed
160
- The best configuration for `--speculative-num-steps`, `--speculative-eagle-topk` and `--speculative-num-draft-tokens` can be searched with [bench_speculative.py](https://github.com/sgl-project/sglang/blob/main/scripts/playground/bench_speculative.py) script for given batch size. The minimum configuration is `--speculative-num-steps 1 --speculative-eagle-topk 1 --speculative-num-draft-tokens 2`, which can achieve speedup for larger batch sizes.
161
When using FlashInfer MLA wrapper (`--attention-backend flashinfer`) with speculative decoding, set the `--speculative-eagle-topk` parameter to `1`. The FlashAttention 3 backend also only supports `--speculative-eagle-topk 1`.
162
163
164
- To enable DeepSeek MTP for large batch sizes (>32), there are some parameters should be changed (Reference [this discussion](https://github.com/sgl-project/sglang/issues/4543#issuecomment-2737413756)):
  - Adjust `--max-running-requests` to a larger number. The default value is `32` for MTP. For larger batch sizes, you should increase this value beyond the default value.
  - Set `--cuda-graph-bs`. It's a list of batch sizes for cuda graph capture. The default captured batch sizes for speculative decoding is set [here](https://github.com/sgl-project/sglang/blob/49420741746c8f3e80e0eb17e7d012bfaf25793a/python/sglang/srt/model_executor/cuda_graph_runner.py#L126). You can include more batch sizes into it.
Ke Bao's avatar
Ke Bao committed
165

Yineng Zhang's avatar
Yineng Zhang committed
166
167
168
169

### Reasoning Content for DeepSeek R1

See [Separate Reasoning](https://docs.sglang.ai/backend/separate_reasoning.html).
Xihuai Wang's avatar
Xihuai Wang committed
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

### Function calling for DeepSeek Models

Add arguments `--tool-call-parser deepseekv3` to enable this feature. For example (running on 1 * H20 node):

```
python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-V3-0324 --tp 8 --port 30000 --host 0.0.0.0 --mem-fraction-static 0.9 --disable-cuda-graph --tool-call-parser deepseekv3
```

Sample Request:

```
curl "http://127.0.0.1:30000/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{"temperature": 0, "max_tokens": 100, "model": "deepseek-ai/DeepSeek-V3-0324", "tools": [{"type": "function", "function": {"name": "query_weather", "description": "Get weather of an city, the user should supply a city first", "parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city, e.g. Beijing"}}, "required": ["city"]}}}], "messages": [{"role": "user", "content": "Hows the weather like in Qingdao today"}]}'
```

Expected Response

```
{"id": "62af80528930423a82c806651ec66e7c", "object": "chat.completion", "created": 1744431333, "model": "deepseek-ai/DeepSeek-V3-0324", "choices": [{"index": 0, "message": {"role": "assistant", "content": null, "reasoning_content": null, "tool_calls": [{"id": "0", "type": "function", "function": {"name": "query_weather", "arguments": "{\\"city\\": \\"Guangzhou\\"}"}}]}, "logprobs": null, "finish_reason": "tool_calls", "matched_stop": null}], "usage": {"prompt_tokens": 118, "total_tokens": 140, "completion_tokens": 22, "prompt_tokens_details": null}}

```
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
Sample Streaming Request:
```
curl "http://127.0.0.1:30000/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{"temperature": 0, "max_tokens": 100, "model": "deepseek-ai/DeepSeek-V3-0324","stream":true,"tools": [{"type": "function", "function": {"name": "query_weather", "description": "Get weather of an city, the user should supply a city first", "parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city, e.g. Beijing"}}, "required": ["city"]}}}], "messages": [{"role": "user", "content": "Hows the weather like in Qingdao today"}]}'
```
Expected Streamed Chunks (simplified for clarity):
```
data: {"choices":[{"delta":{"tool_calls":[{"function":{"arguments":"{\""}}]}}]}
data: {"choices":[{"delta":{"tool_calls":[{"function":{"arguments":"city"}}]}}]}
data: {"choices":[{"delta":{"tool_calls":[{"function":{"arguments":"\":\""}}]}}]}
data: {"choices":[{"delta":{"tool_calls":[{"function":{"arguments":"Q"}}]}}]}
data: {"choices":[{"delta":{"tool_calls":[{"function":{"arguments":"ing"}}]}}]}
data: {"choices":[{"delta":{"tool_calls":[{"function":{"arguments":"dao"}}]}}]}
data: {"choices":[{"delta":{"tool_calls":[{"function":{"arguments":"\"}"}}]}}]}
data: {"choices":[{"delta":{"tool_calls":null}}], "finish_reason": "tool_calls"}
data: [DONE]
```
The client needs to concatenate all arguments fragments to reconstruct the complete tool call:
```
{"city": "Qingdao"}
```
216
217
Important Notes:
1. Use a lower `"temperature"` value for better results.
218

219
220


221
222
## FAQ

223
1. **Question**: What should I do if model loading takes too long and NCCL timeout occurs?
224

225
    **Answer**: You can try to add `--dist-timeout 3600` when launching the model, this allows for 1-hour timeout.