bench_fp8_gemm.py 4.73 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import copy
import itertools

import torch
import triton
from sgl_kernel import fp8_scaled_mm as sgl_scaled_mm
from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm
from vllm._custom_ops import scaled_fp8_quant as vllm_scaled_fp8_quant

# Weight Shapes are in the format
# ([K, N], TP_SPLIT_DIM)
# Example:
#  A shape of ([14336, 4096], 0) indicates the following GEMM shape,
#   - TP1 : K = 14336, N = 4096
#   - TP2 : K = 7168, N = 4096
#  A shape of ([4096, 6144], 1) indicates the following GEMM shape,
#   - TP1 : K = 4096, N = 6144
#   - TP4 : K = 4096, N = 1536

# TP1 shapes
WEIGHT_SHAPES = {
    "meta-llama/Llama-3.1-8B-Instruct": [
        ([4096, 6144], 1),
        ([4096, 4096], 0),
        ([4096, 28672], 1),
        ([14336, 4096], 0),
    ],
    "meta-llama/Llama-3.3-70B-Instruct": [
        ([8192, 10240], 1),
        ([8192, 8192], 0),
        ([8192, 57344], 1),
        ([28672, 8192], 0),
    ],
    "mistralai/Mistral-Large-Instruct-2407": [
        ([12288, 14336], 1),
        ([12288, 12288], 0),
        ([12288, 57344], 1),
        ([28672, 12288], 0),
    ],
    "Qwen/Qwen2.5-7B-Instruct": [
        ([3584, 4608], 1),
        ([3584, 3584], 0),
        ([3584, 37888], 1),
        ([18944, 3584], 0),
    ],
    "Qwen/Qwen2.5-32B-Instruct": [
        ([5120, 7168], 1),
        ([5120, 5120], 0),
        ([5120, 55296], 1),
        ([27648, 5120], 0),
    ],
    "Qwen/Qwen2.5-72B-Instruct": [
        ([8192, 10240], 1),
        ([8192, 8192], 0),
        ([8192, 59136], 1),
        ([29568, 8192], 0),
    ],
    "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": [
        ([2048, 3072], 1),
        ([2048, 4096], 1),
        ([2048, 2048], 0),
        ([2048, 576], 0),
        ([2048, 21888], 1),
        ([10944, 2048], 0),
        ([2048, 2816], 1),
        ([1408, 2048], 0),
    ],
}


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=["batch_size"],
        x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048],
        x_log=False,
        line_arg="provider",
        line_vals=[
            "vllm-fp8-fp16",
            "vllm-fp8-bf16",
            "sglang-fp8-fp16",
            "sglang-fp8-bf16",
        ],
        line_names=[
            "vllm-fp8-fp16",
            "vllm-fp8-bf16",
            "sglang-fp8-fp16",
            "sglang-fp8-bf16",
        ],
        styles=[("green", "-"), ("green", "--"), ("blue", "-"), ("blue", "--")],
        ylabel="GB/s",
        plot_name="fp8 scaled matmul",
        args={},
    )
)
def benchmark(batch_size, provider, N, K):
    # M, N, K = batch_size, 4096, 8192
    M = batch_size
    a = torch.ones((M, K), device="cuda") * 5.0
    b = torch.ones((N, K), device="cuda") * 5.0
    scale_a = torch.randn((M,), device="cuda", dtype=torch.float32)
    scale_b = torch.randn((N,), device="cuda", dtype=torch.float32)
    a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a)
    b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
    b_fp8 = b_fp8.t()
    quantiles = [0.5, 0.2, 0.8]

    dtype = torch.float16 if "fp16" in provider else torch.bfloat16

    if "vllm-fp8" in provider:
        ms, min_ms, max_ms = triton.testing.do_bench(
            lambda: vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype),
            quantiles=quantiles,
        )
    elif "sglang-fp8" in provider:
        ms, min_ms, max_ms = triton.testing.do_bench(
            lambda: sgl_scaled_mm(
                a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype, bias=None
            ),
            quantiles=quantiles,
        )

    gbps = lambda ms: (2 * M * N * K + M * N) * a.element_size() * 1e-9 / (ms * 1e-3)
    return gbps(ms), gbps(max_ms), gbps(min_ms)


def prepare_shapes(args):
    KN_model_names = []
    models_tps = list(itertools.product(args.models, args.tp_sizes))
    for model, tp_size in models_tps:
        assert model in WEIGHT_SHAPES
        for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
            KN[tp_split_dim] = KN[tp_split_dim] // tp_size
            KN.append(model)
            KN_model_names.append(KN)
    return KN_model_names


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--models",
        nargs="+",
        type=str,
        default=["meta-llama/Llama-3.1-8B-Instruct"],
        help="List of models to benchmark",
    )
    parser.add_argument(
        "--tp-sizes",
        nargs="+",
        type=int,
        default=[1],
        help="List of tensor parallel sizes",
    )
    args = parser.parse_args()

    KN_model_names = prepare_shapes(args)
    for K, N, model_name in KN_model_names:
        print(f"{model_name} N={N} K={K}: ")
        benchmark.run(
            print_data=True, show_plots=True, save_path="bench_fp8_res", N=N, K=K
        )

    print("Benchmark finished!")