test_vlm_input_format.py 7.48 KB
Newer Older
1
2
3
4
5
6
7
8
9
import json
import unittest
from io import BytesIO
from typing import Optional

import requests
import torch
from PIL import Image
from transformers import (
10
    AutoModel,
11
12
13
14
15
16
17
    AutoProcessor,
    Gemma3ForConditionalGeneration,
    Qwen2_5_VLForConditionalGeneration,
)

from sglang import Engine
from sglang.srt.conversation import generate_chat_conv
18
from sglang.srt.entrypoints.openai.protocol import ChatCompletionRequest
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

TEST_IMAGE_URL = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"


class VLMInputTestBase:
    model_path = None
    chat_template = None
    processor = None
    visual = None  # Should be a callable for precomputed features

    @classmethod
    def setUpClass(cls):
        assert cls.model_path is not None, "Set model_path in subclass"
        assert cls.chat_template is not None, "Set chat_template in subclass"
        cls.image_url = TEST_IMAGE_URL
        cls.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        response = requests.get(cls.image_url)
        cls.main_image = Image.open(BytesIO(response.content))
        cls.processor = AutoProcessor.from_pretrained(
            cls.model_path, trust_remote_code=True, use_fast=True
        )
        cls._init_visual()

    @classmethod
    def _init_visual(cls):
        """Override in subclass to set up cls.visual as a callable for precomputed features."""
        raise NotImplementedError

    def setUp(self):
        self.engine = Engine(
            model_path=self.model_path,
            chat_template=self.chat_template,
            device=self.device.type,
            mem_fraction_static=0.8,
            enable_multimodal=True,
            disable_cuda_graph=True,
55
            trust_remote_code=True,
56
57
58
59
60
        )

    def tearDown(self):
        self.engine.shutdown()

61
62
63
64
    def verify_response(self, output):
        out_text = output["text"].lower()
        assert "taxi" in out_text or "cab" in out_text or "car" in out_text, out_text

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    def get_completion_request(self) -> ChatCompletionRequest:
        json_structure = {
            "model": self.model_path,
            "messages": [
                {
                    "role": "user",
                    "content": [
                        {"type": "image_url", "image_url": {"url": self.image_url}},
                        {"type": "text", "text": "What's in this picture?"},
                    ],
                }
            ],
        }
        json_str = json.dumps(json_structure)
        return ChatCompletionRequest.model_validate_json(json_str)

    def get_processor_output(self, req: Optional[ChatCompletionRequest] = None):
        if req is None:
            req = self.get_completion_request()
        conv = generate_chat_conv(req, template_name=self.chat_template)
        text = conv.get_prompt()

        # Process inputs using processor
        inputs = self.processor(
            text=[text],
            images=[self.main_image],
            return_tensors="pt",
        ).to(self.device)

        return inputs

    async def test_understands_image(self):
        req = self.get_completion_request()
        conv = generate_chat_conv(req, template_name=self.chat_template)
        text = conv.get_prompt()
        output = await self.engine.async_generate(
            prompt=text,
            image_data=[self.main_image],
            sampling_params=dict(temperature=0.0),
        )
105
        self.verify_response(output)
106
107
108
109
110
111
112
113
114
115
116
117
118

    async def test_understands_precomputed_features(self):
        req = self.get_completion_request()
        processor_output = self.get_processor_output(req=req)
        with torch.inference_mode():
            precomputed_features = self.__class__.visual(processor_output)
        output = await self.engine.async_generate(
            input_ids=processor_output["input_ids"][0].detach().cpu().tolist(),
            image_data=[
                self._precomputed_image_data(processor_output, precomputed_features)
            ],
            sampling_params=dict(temperature=0.0),
        )
119
        self.verify_response(output)
120
121
122
123
124
125
126
127
128

    async def test_understands_pixel_values(self):
        req = self.get_completion_request()
        processor_output = self.get_processor_output(req=req)
        output = await self.engine.async_generate(
            input_ids=processor_output["input_ids"][0].detach().cpu().tolist(),
            image_data=[self._pixel_values_image_data(processor_output)],
            sampling_params=dict(temperature=0.0),
        )
129
        self.verify_response(output)
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

    def _precomputed_image_data(self, processor_output, precomputed_features):
        """This should not be overridden."""
        return dict(
            modality="IMAGE",
            precomputed_features=precomputed_features,
        )

    def _pixel_values_image_data(self, processor_output):
        """Override in subclass to pass the correct set of arguments."""
        raise NotImplementedError


class TestQwenVLUnderstandsImage(VLMInputTestBase, unittest.IsolatedAsyncioTestCase):
    model_path = "Qwen/Qwen2.5-VL-3B-Instruct"
    chat_template = "qwen2-vl"

    @classmethod
    def _init_visual(cls):
        cls.visual_model = (
            Qwen2_5_VLForConditionalGeneration.from_pretrained(
                cls.model_path, torch_dtype=torch.bfloat16
            )
            .eval()
            .visual.to(cls.device)
        )
        cls.visual = lambda processor_output: cls.visual_model(
            processor_output["pixel_values"], processor_output["image_grid_thw"]
        )

    def _pixel_values_image_data(self, processor_output):
        return dict(
            modality="IMAGE",
163
            image_grid_thw=processor_output["image_grid_thw"],
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
            pixel_values=processor_output["pixel_values"],
        )


class TestGemmaUnderstandsImage(VLMInputTestBase, unittest.IsolatedAsyncioTestCase):
    model_path = "google/gemma-3-4b-it"
    chat_template = "gemma-it"

    @classmethod
    def _init_visual(cls):
        model = Gemma3ForConditionalGeneration.from_pretrained(
            cls.model_path, torch_dtype=torch.bfloat16
        )
        cls.vision_tower = model.vision_tower.eval().to(cls.device)
        cls.mm_projector = model.multi_modal_projector.eval().to(cls.device)
        cls.visual = lambda processor_output: cls.mm_projector(
            cls.vision_tower(
                pixel_values=processor_output["pixel_values"]
            ).last_hidden_state
        )

    def _pixel_values_image_data(self, processor_output):
        return dict(
            modality="IMAGE",
            pixel_values=processor_output["pixel_values"][0],
        )


192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
class TestKimiVLImageUnderstandsImage(
    VLMInputTestBase, unittest.IsolatedAsyncioTestCase
):
    model_path = "moonshotai/Kimi-VL-A3B-Instruct"
    chat_template = "kimi-vl"

    @classmethod
    def _init_visual(cls):
        model = AutoModel.from_pretrained(cls.model_path, trust_remote_code=True)
        cls.vision_tower = model.vision_tower.eval().to(cls.device)
        cls.mm_projector = model.multi_modal_projector.eval().to(cls.device)

        cls.visual = lambda tokenizer_output: cls.mm_projector(
            cls.vision_tower(
                pixel_values=tokenizer_output["pixel_values"],
                grid_hws=tokenizer_output["image_grid_hws"],
            )
        )

    def _pixel_values_image_data(self, processor_output):
        return dict(
            modality="IMAGE",
            pixel_values=processor_output["pixel_values"],
215
            image_grid_hws=processor_output["image_grid_hws"],
216
217
218
        )


219
220
if __name__ == "__main__":
    unittest.main()