data_processing.py 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import json
import os
import pickle
import random
from pathlib import Path
from typing import List, Optional, Tuple, Union

import numpy as np
from nextqa import NExTQALoader

# from nextqa.video import , VideoPrompt
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase

SHAREGPT_URL = "https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json"

from sglang.bench_serving import (
    download_and_cache_file,
    gen_prompt,
    get_gen_prefix_cache_path,
)
from sglang.lang.chat_template import get_chat_template, get_chat_template_by_model_path
23
from sglang.srt.entrypoints.openai.protocol import ChatCompletionMessageContentPart
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from sglang.utils import encode_video_base64

# type of content fields, can be only prompts or with images/videos
MsgContent = Union[str, List[ChatCompletionMessageContentPart]]

# A list of all the conversations. Each conversation is a list of
# tuples. If multiturn is not enabled, the length of list is 1,
# containing only the first Q&A pair.
# For the shared prefix workload (synthetic, loogle, nextqa), it
# is a list of conversations sharing the same prefix (synthetic,
# doc, video)
SampleOutput = List[List[Tuple[MsgContent, int, int]]]


def common_filter_chat(
    num_requests: int,
    new_dataset: List,
    tokenizer: PreTrainedTokenizerBase,
    min_prompt_len: Optional[int],
    min_output_len: Optional[int],
    max_prompt_len: Optional[int],
    max_output_len: Optional[int],
    fixed_output_len: Optional[int],
) -> SampleOutput:
    # Filter out sequences that are too long or too short
    filtered_dataset: SampleOutput = []
    l = 0
    input_tokens = 0
    output_tokens = 0
    while l < num_requests:
        for i in range(len(new_dataset)):
            if l == num_requests:
                break
            processed = []
            for j in new_dataset[i]:
                # Tokenize the prompts and completions.
                prompt = j[0]
                prompt_token_ids = tokenizer.encode(prompt)
                prompt_len = len(prompt_token_ids)

                completion = j[1]
                completion_token_ids = tokenizer.encode(completion)
                output_len = (
                    len(completion_token_ids)
                    if fixed_output_len is None
                    else fixed_output_len
                )
                if (
                    min_prompt_len is not None
                    and prompt_len < min_prompt_len
                    or min_output_len is not None
                    and output_len < min_output_len
                    or max_prompt_len is not None
                    and prompt_len > max_prompt_len
                    or max_output_len is not None
                    and output_len > max_output_len
                ):
                    # Prune too short sequences.
                    continue
                input_tokens += prompt_len
                output_tokens += output_len
                processed.append((prompt, prompt_len, output_len))
86
87
88
            if len(processed) != 0:
                filtered_dataset.append(processed)
                l += 1
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

    print(f"#Input tokens: {input_tokens}")
    print(f"#Output tokens: {output_tokens}")
    return filtered_dataset


def sample_sharegpt_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    disable_shuffle: bool = False,
    enable_multiturn: bool = True,
    fixed_output_len: Optional[int] = None,
) -> SampleOutput:
    if fixed_output_len is not None and fixed_output_len < 4:
        raise ValueError("output_len too small")

    # Download sharegpt if necessary
    if not os.path.isfile(dataset_path):
        dataset_path = download_and_cache_file(SHAREGPT_URL)

    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
    dataset = [data for data in dataset if len(data["conversations"]) >= 2]

    # Keep one conversation in one list
    new_dataset = []
    for data in dataset:
        if len(data["conversations"]) % 2 != 0:
            continue
        if data["conversations"][0]["from"] != "human":
            continue
        chat = []
        total_len = 2
        if enable_multiturn:
            total_len = len(data["conversations"])
        for i in range(0, total_len, 2):
            # One user One Assistant
            chat.append(
                (
                    data["conversations"][i]["value"],
                    data["conversations"][i + 1]["value"],
                )
            )
        new_dataset.append(chat)

    if not disable_shuffle:
        # Shuffle the dataset.
        random.shuffle(new_dataset)

    # Filter out sequences that are too long or too short
    filtered_dataset: SampleOutput = common_filter_chat(
        num_requests, new_dataset, tokenizer, 4, 4, None, None, fixed_output_len
    )
    return filtered_dataset


def sample_ultrachat_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    disable_shuffle: bool = False,
    enable_multiturn: bool = True,
    fixed_output_len: Optional[int] = None,
) -> SampleOutput:
    if fixed_output_len is not None and fixed_output_len < 4:
        raise ValueError("output_len too small")

    # Load the dataset
    dataset = []
    with open(dataset_path) as f:
        while True:
            line = f.readline()
            if not line:
                break
            dataset.append(json.loads(line))

    # Filter out the conversations with less than 2 turns.
    dataset = [data for data in dataset if len(data["data"]) >= 2]

    # Keep one conversation in one list
    new_dataset = []
    for data in dataset:
        if len(data["data"]) % 2 != 0:
            continue
        chat = []
        total_len = 2
        if enable_multiturn:
            total_len = len(data["data"])
        for i in range(0, total_len, 2):
            # One user One Assistant
            chat.append((data["data"][i], data["data"][i + 1]))
        new_dataset.append(chat)

    # Shuffle the dataset.
    if not disable_shuffle:
        random.shuffle(new_dataset)

    # Filter out sequences that are too long or too short
    filtered_dataset: SampleOutput = common_filter_chat(
        num_requests, new_dataset, tokenizer, 4, 4, None, None, fixed_output_len
    )
    return filtered_dataset


def sample_loogle_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    disable_shuffle: bool = False,
    enable_multiturn: bool = True,
    enable_shared_prefix: bool = False,
    fixed_output_len: Optional[int] = None,
) -> SampleOutput:
    if fixed_output_len is not None and fixed_output_len < 4:
        raise ValueError("output_len too small")

    # Load the dataset
    dataset = []
    with open(dataset_path) as f:
        while True:
            line = f.readline()
            if not line:
                break
            dataset.append(json.loads(line))

    # Keep one conversation in one list
    new_dataset = []
    # TODO: Add shared prefix support for loogle
    # NOTE: Now we preprocess it only for chat
    for data in dataset:
        chat = []
        if (
            "qa_pairs" not in data
            or data["qa_pairs"] == "none"
            or len(data["qa_pairs"]) == 0
        ):
            # If Q is none (for summarization),
            # We add a question for summarization
            # And keep the summary up to 1024 words
            chat.append(
                (
                    "Input: "
                    + data["input"]
                    + " Question: "
                    + "Please summarize the input",
                    data["input"][:1024],
                )
            )
            new_dataset.append(chat)
        else:
            qa_pairs = eval(data["qa_pairs"])
            for i, qa in enumerate(qa_pairs):
                if i == 0 or enable_shared_prefix:
                    # Combine input with the first Q
                    chat.append(
                        ("Input: " + data["input"] + " Question: " + qa["Q"], qa["A"])
                    )
                elif enable_multiturn:
                    chat.append((qa["Q"], qa["A"]))

            new_dataset.append(chat)

    # Shuffle the dataset.
    if not disable_shuffle:
        random.shuffle(new_dataset)

    # Filter out sequences that are too long or too short
    filtered_dataset: SampleOutput = common_filter_chat(
        num_requests, new_dataset, tokenizer, 4, None, None, None, fixed_output_len
    )
    return filtered_dataset


def sample_nextqa_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    max_frames: int,  # Specific for video
    model_path: str,
    disable_shuffle: bool = False,
    enable_multiturn: bool = True,  # No multiturn support for now
    backend: str = "sglang-oai",
    chat_template_name: Optional[str] = None,
    fixed_output_len: Optional[int] = None,
) -> SampleOutput:
    """
    Example of messages:
    message = {
        "role": "user",
        "content": [
            {"type": "image_url", "image_url": {"url": base64_data}},
            {"type": "text", "text": video.prompt},
        ],
    }
    """

    if fixed_output_len is None:
        fixed_output_len = 4096

    # TODO: Check for multiturn
    dataset = NExTQALoader(video_dir=dataset_path, max_frames=max_frames)
    new_dataset = []
    for v in dataset:
        new_dataset.append(v)

    if not disable_shuffle:
        random.shuffle(new_dataset)

    # TODO: prompt len can get from server side
    filtered_dataset = []
    l = 0
    while l < num_requests:
        for i in range(len(new_dataset)):
            if l == num_requests:
                break

            video = new_dataset[i]

            # text prompt
            prompt = video.prompt

            # NOTE: Chat Template is a must for video benchmark because we have to
            # add special image token for later expansion
            if backend == "sglang" or backend == "sglang-native":
                if "chat_template" in tokenizer.init_kwargs:
                    chat_template = get_chat_template(tokenizer.get_chat_template())
                elif chat_template_name is not None:
                    chat_template = get_chat_template(chat_template_name)
                else:
                    chat_template = get_chat_template_by_model_path(model_path)
                prompt = chat_template.image_token + prompt

            prompt_token_ids = tokenizer(prompt).input_ids
            prompt_len = len(prompt_token_ids)
            output_len = fixed_output_len  # max output len, not real output len

            # video input
            base64_data = encode_video_base64(video.path, video.num_frames)

            # NOTE: This will be replaced by the expanded length from the server
            prompt_len += video.num_frames

            # add to content
            content = [
                {"type": "image_url", "image_url": {"url": base64_data}},
                {"type": "text", "text": prompt},
            ]

            filtered_dataset.append([(content, prompt_len, output_len)])
            l += 1
    return filtered_dataset


def sample_random_requests(
    input_len: int,
    output_len: int,
    num_prompts: int,
    range_ratio: float,
    tokenizer: PreTrainedTokenizerBase,
    dataset_path: str,
    disable_shuffle: bool = False,
) -> SampleOutput:

    input_lens = np.random.randint(
        max(int(input_len * range_ratio), 1),
        input_len + 1,
        size=num_prompts,
    )
    output_lens = np.random.randint(
        int(output_len * range_ratio),
        output_len + 1,
        size=num_prompts,
    )

    if True:
        # Sample token ids from ShareGPT and repeat/truncate them to satisfy the input_lens

        # Download sharegpt if necessary
        if not os.path.isfile(dataset_path):
            dataset_path = download_and_cache_file(SHAREGPT_URL)

        # Load the dataset.
        with open(dataset_path) as f:
            dataset = json.load(f)
        # Filter out the conversations with less than 2 turns.
        dataset = [data for data in dataset if len(data["conversations"]) >= 2]
        # Only keep the first two turns of each conversation.
        dataset = [
            (data["conversations"][0]["value"], data["conversations"][1]["value"])
            for data in dataset
        ]

        if not disable_shuffle:
            # Shuffle the dataset.
            random.shuffle(dataset)

        # Filter out sequences that are too long or too short
        input_requests: SampleOutput = []
        for data in dataset:
            i = len(input_requests)
            if i == num_prompts:
                break

            # Tokenize the prompts and completions.
            prompt = data[0]
            prompt_token_ids = tokenizer.encode(prompt)
            prompt_len = len(prompt_token_ids)

            # Skip empty prompt
            if prompt_len == 0:
                continue

            if prompt_len > input_lens[i]:
                input_ids = prompt_token_ids[: input_lens[i]]
            else:
                ratio = (input_lens[i] + prompt_len - 1) // prompt_len
                input_ids = (prompt_token_ids * ratio)[: input_lens[i]]
            prompt = tokenizer.decode(input_ids)
            input_requests.append([(prompt, int(input_lens[i]), int(output_lens[i]))])
    else:
        # Sample token ids from random integers. This can cause some NaN issues.
        offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
        input_requests = []
        for i in range(num_prompts):
            prompt = tokenizer.decode(
                [
                    (offsets[i] + i + j) % tokenizer.vocab_size
                    for j in range(input_lens[i])
                ]
            )
            input_requests.append([(prompt, int(input_lens[i]), int(output_lens[i]))])

    print(f"#Input tokens: {np.sum(input_lens)}")
    print(f"#Output tokens: {np.sum(output_lens)}")
    return input_requests


def gen_prompt(tokenizer, token_num):
    """Generate a random prompt of specified token length using tokenizer vocabulary."""
    all_available_tokens = list(tokenizer.get_vocab().values())
    selected_tokens = random.choices(all_available_tokens, k=token_num)
    return tokenizer.decode(selected_tokens)


def get_gen_prefix_cache_path(args, tokenizer):
    """Create cache directory under ~/.cache/sglang/benchmark"""
    cache_dir = Path.home() / ".cache" / "sglang" / "benchmark"

    # Create a unique cache filename based on the generation parameters
    cache_key = (
        f"gen_prefix_{args.gen_num_groups}_{args.gen_prompts_per_group}_"
        f"{args.gen_system_prompt_len}_{args.gen_question_len}_{args.gen_output_len}_"
        f"{tokenizer.__class__.__name__}.pkl"
    )
    return cache_dir / cache_key


def sample_generated_shared_prefix_requests(
    num_groups: int,
    prompts_per_group: int,
    system_prompt_len: int,
    question_len: int,
    output_len: int,
    tokenizer: PreTrainedTokenizerBase,
    args,
    disable_shuffle: bool = False,
) -> SampleOutput:
    """Generate benchmark requests with shared system prompts using random tokens and caching."""
    cache_path = get_gen_prefix_cache_path(args, tokenizer)

    # Try to load from cache first
    if cache_path.exists():
        print(f"\nLoading cached generated input data from {cache_path}")
        with open(cache_path, "rb") as f:
            return pickle.load(f)

    print("\nGenerating new input data...")

    # Generate system prompts for each group
    system_prompts = []
    for _ in range(num_groups):
        system_prompt = gen_prompt(tokenizer, system_prompt_len)
        system_prompts.append(system_prompt)

    # Generate questions
    questions = []
    for _ in range(num_groups * prompts_per_group):
        question = gen_prompt(tokenizer, question_len)
        questions.append(question)

    # Combine system prompts with questions
    input_requests = []
    total_input_tokens = 0
    total_output_tokens = 0

    for group_idx in tqdm(range(num_groups), desc="Generating system prompt"):
        system_prompt = system_prompts[group_idx]
        input_requests.append([])
        for prompt_idx in tqdm(
            range(prompts_per_group), desc="Generating questions", leave=False
        ):
            question = questions[group_idx * prompts_per_group + prompt_idx]
            full_prompt = f"{system_prompt}\n\n{question}"
            prompt_len = len(tokenizer.encode(full_prompt))
            input_requests[-1].append((full_prompt, prompt_len, output_len))
            total_input_tokens += prompt_len
            total_output_tokens += output_len

    if not disable_shuffle:
        # Shuffle questions
        random.shuffle(input_requests)

    # Print statistics
    print(f"\nGenerated shared prefix dataset statistics:")
    print(f"Number of groups: {num_groups}")
    print(f"Prompts per group: {prompts_per_group}")
    print(f"Total prompts: {len(input_requests) * prompts_per_group}")
    print(f"Total input tokens: {total_input_tokens}")
    print(f"Total output tokens: {total_output_tokens}")
    print(
        f"Average system prompt length: {sum(len(tokenizer.encode(sp)) for sp in system_prompts) / len(system_prompts):.1f} tokens"
    )
    print(
        f"Average question length: {sum(len(tokenizer.encode(q)) for q in questions) / len(questions):.1f} tokens\n"
    )

    # Save to cache
    cache_path.parent.mkdir(parents=True, exist_ok=True)
    print(f"Caching generated input data to {cache_path}")
    with open(cache_path, "wb") as f:
        pickle.dump(input_requests, f)

    return input_requests


def get_dataset(args, tokenizer):
    if args.dataset_name == "sharegpt":
        input_requests = sample_sharegpt_requests(
            dataset_path=args.dataset_path,
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            disable_shuffle=args.disable_shuffle,
            enable_multiturn=args.enable_multiturn,
            fixed_output_len=args.fixed_output_len,
        )
    elif args.dataset_name == "ultrachat":
        input_requests = sample_ultrachat_requests(
            dataset_path=args.dataset_path,
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            disable_shuffle=args.disable_shuffle,
            enable_multiturn=args.enable_multiturn,
            fixed_output_len=args.fixed_output_len,
        )
    elif args.dataset_name == "loogle":
        input_requests = sample_loogle_requests(
            dataset_path=args.dataset_path,
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            disable_shuffle=args.disable_shuffle,
            enable_multiturn=args.enable_multiturn,
            enable_shared_prefix=args.enable_shared_prefix,
            fixed_output_len=args.fixed_output_len,
        )
    elif args.dataset_name == "nextqa":
        input_requests = sample_nextqa_requests(
            dataset_path=args.dataset_path,
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            max_frames=args.max_frames,
            model_path=args.model,
            disable_shuffle=args.disable_shuffle,
            enable_multiturn=args.enable_multiturn,
            backend=args.backend,
            chat_template_name=args.chat_template,
            fixed_output_len=args.fixed_output_len,
        )
    elif args.dataset_name == "random":
        input_requests = sample_random_requests(
            input_len=args.random_input_len,
            output_len=args.random_output_len,
            num_prompts=args.num_prompts,
            range_ratio=args.random_range_ratio,
            tokenizer=tokenizer,
            dataset_path=args.dataset_path,
        )
    elif args.dataset_name == "generated-shared-prefix":
        input_requests = sample_generated_shared_prefix_requests(
            num_groups=args.gen_num_groups,
            prompts_per_group=args.gen_prompts_per_group,
            system_prompt_len=args.gen_system_prompt_len,
            question_len=args.gen_question_len,
            output_len=args.gen_output_len,
            args=args,
            tokenizer=tokenizer,
        )
    else:
        raise ValueError(f"Unknown dataset: {args.dataset_name}")
    return input_requests