factory.rs 10.5 KB
Newer Older
1
use super::traits;
2
3
4
5
6
7
8
use anyhow::{Error, Result};
use std::fs::File;
use std::io::Read;
use std::path::Path;
use std::sync::Arc;

use super::huggingface::HuggingFaceTokenizer;
9
10
use super::tiktoken::TiktokenTokenizer;
use crate::tokenizer::hub::download_tokenizer_from_hf;
11
12
13
14
15
16

/// Represents the type of tokenizer being used
#[derive(Debug, Clone)]
pub enum TokenizerType {
    HuggingFace(String),
    Mock,
17
18
    Tiktoken(String),
    // Future: SentencePiece, GGUF
19
20
21
22
23
24
25
26
}

/// Create a tokenizer from a file path to a tokenizer file.
/// The file extension is used to determine the tokenizer type.
/// Supported file types are:
/// - json: HuggingFace tokenizer
/// - For testing: can return mock tokenizer
pub fn create_tokenizer_from_file(file_path: &str) -> Result<Arc<dyn traits::Tokenizer>> {
27
28
29
30
31
32
33
34
    create_tokenizer_with_chat_template(file_path, None)
}

/// Create a tokenizer from a file path with an optional chat template
pub fn create_tokenizer_with_chat_template(
    file_path: &str,
    chat_template_path: Option<&str>,
) -> Result<Arc<dyn traits::Tokenizer>> {
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    // Special case for testing
    if file_path == "mock" || file_path == "test" {
        return Ok(Arc::new(super::mock::MockTokenizer::new()));
    }

    let path = Path::new(file_path);

    // Check if file exists
    if !path.exists() {
        return Err(Error::msg(format!("File not found: {}", file_path)));
    }

    // Try to determine tokenizer type from extension
    let extension = path
        .extension()
        .and_then(std::ffi::OsStr::to_str)
        .map(|s| s.to_lowercase());

53
    let result = match extension.as_deref() {
54
        Some("json") => {
55
56
57
58
            let tokenizer =
                HuggingFaceTokenizer::from_file_with_chat_template(file_path, chat_template_path)?;

            Ok(Arc::new(tokenizer) as Arc<dyn traits::Tokenizer>)
59
60
61
62
63
64
65
66
67
68
69
        }
        Some("model") => {
            // SentencePiece model file
            Err(Error::msg("SentencePiece models not yet supported"))
        }
        Some("gguf") => {
            // GGUF format
            Err(Error::msg("GGUF format not yet supported"))
        }
        _ => {
            // Try to auto-detect by reading file content
70
            auto_detect_tokenizer(file_path)
71
        }
72
73
74
    };

    result
75
76
77
78
79
80
81
82
83
84
85
}

/// Auto-detect tokenizer type by examining file content
fn auto_detect_tokenizer(file_path: &str) -> Result<Arc<dyn traits::Tokenizer>> {
    let mut file = File::open(file_path)?;
    let mut buffer = vec![0u8; 512]; // Read first 512 bytes for detection
    let bytes_read = file.read(&mut buffer)?;
    buffer.truncate(bytes_read);

    // Check for JSON (HuggingFace format)
    if is_likely_json(&buffer) {
86
87
        let tokenizer = HuggingFaceTokenizer::from_file(file_path)?;
        return Ok(Arc::new(tokenizer));
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    }

    // Check for GGUF magic number
    if buffer.len() >= 4 && &buffer[0..4] == b"GGUF" {
        return Err(Error::msg("GGUF format detected but not yet supported"));
    }

    // Check for SentencePiece model
    if is_likely_sentencepiece(&buffer) {
        return Err(Error::msg(
            "SentencePiece model detected but not yet supported",
        ));
    }

    Err(Error::msg(format!(
        "Unable to determine tokenizer type for file: {}",
        file_path
    )))
}

/// Check if the buffer likely contains JSON data
fn is_likely_json(buffer: &[u8]) -> bool {
    // Skip UTF-8 BOM if present
    let content = if buffer.len() >= 3 && buffer[0..3] == [0xEF, 0xBB, 0xBF] {
        &buffer[3..]
    } else {
        buffer
    };

    // Find first non-whitespace character without allocation
    if let Some(first_byte) = content.iter().find(|&&b| !b.is_ascii_whitespace()) {
        *first_byte == b'{' || *first_byte == b'['
    } else {
        false
    }
}

/// Check if the buffer likely contains a SentencePiece model
fn is_likely_sentencepiece(buffer: &[u8]) -> bool {
    // SentencePiece models often start with specific patterns
    // This is a simplified check
    buffer.len() >= 12
        && (buffer.starts_with(b"\x0a\x09")
            || buffer.starts_with(b"\x08\x00")
            || buffer.windows(4).any(|w| w == b"<unk")
            || buffer.windows(4).any(|w| w == b"<s>")
            || buffer.windows(4).any(|w| w == b"</s>"))
}

137
138
139
140
/// Factory function to create tokenizer from a model name or path (async version)
pub async fn create_tokenizer_async(
    model_name_or_path: &str,
) -> Result<Arc<dyn traits::Tokenizer>> {
141
142
143
144
145
146
    // Check if it's a file path
    let path = Path::new(model_name_or_path);
    if path.exists() {
        return create_tokenizer_from_file(model_name_or_path);
    }

147
    // Check if it's a GPT model name that should use Tiktoken
148
149
150
151
152
    if model_name_or_path.contains("gpt-")
        || model_name_or_path.contains("davinci")
        || model_name_or_path.contains("curie")
        || model_name_or_path.contains("babbage")
        || model_name_or_path.contains("ada")
153
    {
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        let tokenizer = TiktokenTokenizer::from_model_name(model_name_or_path)?;
        return Ok(Arc::new(tokenizer));
    }

    // Try to download tokenizer files from HuggingFace
    match download_tokenizer_from_hf(model_name_or_path).await {
        Ok(cache_dir) => {
            // Look for tokenizer.json in the cache directory
            let tokenizer_path = cache_dir.join("tokenizer.json");
            if tokenizer_path.exists() {
                create_tokenizer_from_file(tokenizer_path.to_str().unwrap())
            } else {
                // Try other common tokenizer file names
                let possible_files = ["tokenizer_config.json", "vocab.json"];
                for file_name in &possible_files {
                    let file_path = cache_dir.join(file_name);
                    if file_path.exists() {
                        return create_tokenizer_from_file(file_path.to_str().unwrap());
                    }
                }
                Err(Error::msg(format!(
                    "Downloaded model '{}' but couldn't find a suitable tokenizer file",
                    model_name_or_path
                )))
            }
179
        }
180
181
182
183
        Err(e) => Err(Error::msg(format!(
            "Failed to download tokenizer from HuggingFace: {}",
            e
        ))),
184
    }
185
}
186

187
188
189
190
191
192
/// Factory function to create tokenizer from a model name or path (blocking version)
pub fn create_tokenizer(model_name_or_path: &str) -> Result<Arc<dyn traits::Tokenizer>> {
    // Check if it's a file path
    let path = Path::new(model_name_or_path);
    if path.exists() {
        return create_tokenizer_from_file(model_name_or_path);
193
194
    }

195
196
197
198
199
200
    // Check if it's a GPT model name that should use Tiktoken
    if model_name_or_path.contains("gpt-")
        || model_name_or_path.contains("davinci")
        || model_name_or_path.contains("curie")
        || model_name_or_path.contains("babbage")
        || model_name_or_path.contains("ada")
201
    {
202
203
204
205
206
207
208
209
210
211
212
213
214
        let tokenizer = TiktokenTokenizer::from_model_name(model_name_or_path)?;
        return Ok(Arc::new(tokenizer));
    }

    // Only use tokio for HuggingFace downloads
    // Check if we're already in a tokio runtime
    if let Ok(handle) = tokio::runtime::Handle::try_current() {
        // We're in a runtime, use block_in_place
        tokio::task::block_in_place(|| handle.block_on(create_tokenizer_async(model_name_or_path)))
    } else {
        // No runtime, create a temporary one
        let rt = tokio::runtime::Runtime::new()?;
        rt.block_on(create_tokenizer_async(model_name_or_path))
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    }
}

/// Get information about a tokenizer file
pub fn get_tokenizer_info(file_path: &str) -> Result<TokenizerType> {
    let path = Path::new(file_path);

    if !path.exists() {
        return Err(Error::msg(format!("File not found: {}", file_path)));
    }

    let extension = path
        .extension()
        .and_then(std::ffi::OsStr::to_str)
        .map(|s| s.to_lowercase());

    match extension.as_deref() {
        Some("json") => Ok(TokenizerType::HuggingFace(file_path.to_string())),
        _ => {
            // Try auto-detection
            use std::fs::File;
            use std::io::Read;

            let mut file = File::open(file_path)?;
            let mut buffer = vec![0u8; 512];
            let bytes_read = file.read(&mut buffer)?;
            buffer.truncate(bytes_read);

            if is_likely_json(&buffer) {
                Ok(TokenizerType::HuggingFace(file_path.to_string()))
            } else {
                Err(Error::msg("Unknown tokenizer type"))
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_json_detection() {
        assert!(is_likely_json(b"{\"test\": \"value\"}"));
        assert!(is_likely_json(b"  \n\t{\"test\": \"value\"}"));
        assert!(is_likely_json(b"[1, 2, 3]"));
        assert!(!is_likely_json(b"not json"));
        assert!(!is_likely_json(b""));
    }

    #[test]
    fn test_mock_tokenizer_creation() {
        let tokenizer = create_tokenizer_from_file("mock").unwrap();
        assert_eq!(tokenizer.vocab_size(), 8); // Mock tokenizer has 8 tokens
    }

    #[test]
    fn test_file_not_found() {
        let result = create_tokenizer_from_file("/nonexistent/file.json");
        assert!(result.is_err());
        if let Err(e) = result {
            assert!(e.to_string().contains("File not found"));
        }
    }
279
280
281
282
283
284
285
286

    #[test]
    fn test_create_tiktoken_tokenizer() {
        let tokenizer = create_tokenizer("gpt-4").unwrap();
        assert!(tokenizer.vocab_size() > 0);

        let text = "Hello, world!";
        let encoding = tokenizer.encode(text).unwrap();
287
        let decoded = tokenizer.decode(encoding.token_ids(), false).unwrap();
288
289
        assert_eq!(decoded, text);
    }
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

    #[tokio::test]
    async fn test_download_tokenizer_from_hf() {
        // Skip this test if HF_TOKEN is not set and we're in CI
        if std::env::var("CI").is_ok() && std::env::var("HF_TOKEN").is_err() {
            println!("Skipping HF download test in CI without HF_TOKEN");
            return;
        }

        // Try to create tokenizer for a known small model
        let result = create_tokenizer_async("bert-base-uncased").await;

        // The test might fail due to network issues or rate limiting
        // so we just check that the function executes without panic
        match result {
            Ok(tokenizer) => {
                assert!(tokenizer.vocab_size() > 0);
                println!("Successfully downloaded and created tokenizer");
            }
            Err(e) => {
                println!("Download failed (this might be expected): {}", e);
                // Don't fail the test - network issues shouldn't break CI
            }
        }
    }
315
}