lora.ipynb 19.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# LoRA Serving"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "SGLang enables the use of [LoRA adapters](https://arxiv.org/abs/2106.09685) with a base model. By incorporating techniques from [S-LoRA](https://arxiv.org/pdf/2311.03285) and [Punica](https://arxiv.org/pdf/2310.18547), SGLang can efficiently support multiple LoRA adapters for different sequences within a single batch of inputs."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Arguments for LoRA Serving"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The following server arguments are relevant for multi-LoRA serving:\n",
    "\n",
30
31
    "* `enable_lora`: Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.\n",
    "\n",
32
    "* `lora_paths`: The list of LoRA adapters to load. Each adapter must be specified in one of the following formats: <PATH> | <NAME>=<PATH> | JSON with schema {\"lora_name\":str,\"lora_path\":str,\"pinned\":bool}.\n",
33
34
35
    "\n",
    "* `max_loras_per_batch`: Maximum number of adaptors used by each batch. This argument can affect the amount of GPU memory reserved for multi-LoRA serving, so it should be set to a smaller value when memory is scarce. Defaults to be 8.\n",
    "\n",
36
37
    "* `max_loaded_loras`: If specified, it limits the maximum number of LoRA adapters loaded in CPU memory at a time. The value must be greater than or equal to `max-loras-per-batch`.\n",
    "\n",
38
    "* `lora_backend`: The backend of running GEMM kernels for Lora modules. Currently we support Triton LoRA backend (`triton`) and Chunked SGMV backend (`csgmv`). In the future, faster backend built upon Cutlass or Cuda kernels will be added.\n",
39
    "\n",
40
41
    "* `max_lora_rank`: The maximum LoRA rank that should be supported. If not specified, it will be automatically inferred from the adapters provided in `--lora-paths`. This argument is needed when you expect to dynamically load adapters of larger LoRA rank after server startup.\n",
    "\n",
42
    "* `lora_target_modules`: The union set of all target modules where LoRA should be applied (e.g., `q_proj`, `k_proj`, `gate_proj`). If not specified, it will be automatically inferred from the adapters provided in `--lora-paths`. This argument is needed when you expect to dynamically load adapters of different target modules after server startup. You can also set it to `all` to enable LoRA for all supported modules. However, enabling LoRA on additional modules introduces a minor performance overhead. If your application is performance-sensitive, we recommend only specifying the modules for which you plan to load adapters.\n",
43
    "\n",
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    "* `tp_size`: LoRA serving along with Tensor Parallelism is supported by SGLang. `tp_size` controls the number of GPUs for tensor parallelism. More details on the tensor sharding strategy can be found in [S-Lora](https://arxiv.org/pdf/2311.03285) paper.\n",
    "\n",
    "From client side, the user needs to provide a list of strings as input batch, and a list of adaptor names that each input sequence corresponds to."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Usage\n",
    "\n",
    "### Serving Single Adaptor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
65
66
67
68
    "import requests\n",
    "\n",
    "from sglang.test.doc_patch import launch_server_cmd\n",
    "from sglang.utils import wait_for_server, terminate_process"
69
70
71
72
73
74
75
76
77
78
79
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
80
    "    --enable-lora \\\n",
81
    "    --lora-paths lora0=algoprog/fact-generation-llama-3.1-8b-instruct-lora \\\n",
82
    "    --max-loras-per-batch 1 \\\n",
83
    "    --log-level warning \\\n",
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = f\"http://127.0.0.1:{port}\"\n",
    "json_data = {\n",
    "    \"text\": [\n",
    "        \"List 3 countries and their capitals.\",\n",
100
    "        \"List 3 countries and their capitals.\",\n",
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    "    ],\n",
    "    \"sampling_params\": {\"max_new_tokens\": 32, \"temperature\": 0},\n",
    "    # The first input uses lora0, and the second input uses the base model\n",
    "    \"lora_path\": [\"lora0\", None],\n",
    "}\n",
    "response = requests.post(\n",
    "    url + \"/generate\",\n",
    "    json=json_data,\n",
    ")\n",
    "print(f\"Output 0: {response.json()[0]['text']}\")\n",
    "print(f\"Output 1: {response.json()[1]['text']}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Serving Multiple Adaptors"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
139
    "    --enable-lora \\\n",
140
141
    "    --lora-paths lora0=algoprog/fact-generation-llama-3.1-8b-instruct-lora \\\n",
    "    lora1=Nutanix/Meta-Llama-3.1-8B-Instruct_lora_4_alpha_16 \\\n",
142
    "    --max-loras-per-batch 2 \\\n",
143
    "    --log-level warning \\\n",
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = f\"http://127.0.0.1:{port}\"\n",
    "json_data = {\n",
    "    \"text\": [\n",
    "        \"List 3 countries and their capitals.\",\n",
160
    "        \"List 3 countries and their capitals.\",\n",
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    "    ],\n",
    "    \"sampling_params\": {\"max_new_tokens\": 32, \"temperature\": 0},\n",
    "    # The first input uses lora0, and the second input uses lora1\n",
    "    \"lora_path\": [\"lora0\", \"lora1\"],\n",
    "}\n",
    "response = requests.post(\n",
    "    url + \"/generate\",\n",
    "    json=json_data,\n",
    ")\n",
    "print(f\"Output 0: {response.json()[0]['text']}\")\n",
    "print(f\"Output 1: {response.json()[1]['text']}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
183
184
185
186
187
188
189
190
191
192
193
194
195
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Dynamic LoRA loading"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Instead of specifying all adapters during server startup via `--lora-paths`. You can also load & unload LoRA adapters dynamically via the `/load_lora_adapter` and `/unload_lora_adapter` API.\n",
    "\n",
196
    "When using dynamic LoRA loading, it's recommended to explicitly specify both `--max-lora-rank` and `--lora-target-modules` at startup. For backward compatibility, SGLang will infer these values from `--lora-paths` if they are not explicitly provided. However, in that case, you would have to ensure that all dynamically loaded adapters share the same shape (rank and target modules) as those in the initial `--lora-paths` or are strictly \"smaller\"."
197
198
199
200
201
202
203
204
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
205
206
207
208
209
210
211
    "lora0 = \"Nutanix/Meta-Llama-3.1-8B-Instruct_lora_4_alpha_16\"  # rank - 4, target modules - q_proj, k_proj, v_proj, o_proj, gate_proj\n",
    "lora1 = \"algoprog/fact-generation-llama-3.1-8b-instruct-lora\"  # rank - 64, target modules - q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj\n",
    "lora0_new = \"philschmid/code-llama-3-1-8b-text-to-sql-lora\"  # rank - 256, target modules - q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj\n",
    "\n",
    "\n",
    "# The `--target-lora-modules` param below is technically not needed, as the server will infer it from lora0 which already has all the target modules specified.\n",
    "# We are adding it here just to demonstrate usage.\n",
212
213
214
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "    python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
215
    "    --enable-lora \\\n",
216
    "    --cuda-graph-max-bs 2 \\\n",
217
    "    --max-loras-per-batch 2 \\\n",
218
219
    "    --max-lora-rank 256\n",
    "    --lora-target-modules all\n",
220
    "    --log-level warning\n",
221
222
223
224
225
226
227
    "    \"\"\"\n",
    ")\n",
    "\n",
    "url = f\"http://127.0.0.1:{port}\"\n",
    "wait_for_server(url)"
   ]
  },
228
229
230
231
232
233
234
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Load adapter lora0"
   ]
  },
235
236
237
238
239
240
241
242
243
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = requests.post(\n",
    "    url + \"/load_lora_adapter\",\n",
    "    json={\n",
244
245
    "        \"lora_name\": \"lora0\",\n",
    "        \"lora_path\": lora0,\n",
246
247
248
249
250
251
252
253
254
255
    "    },\n",
    ")\n",
    "\n",
    "if response.status_code == 200:\n",
    "    print(\"LoRA adapter loaded successfully.\", response.json())\n",
    "else:\n",
    "    print(\"Failed to load LoRA adapter.\", response.json())"
   ]
  },
  {
256
   "cell_type": "markdown",
257
258
   "metadata": {},
   "source": [
259
    "Load adapter lora1:"
260
261
262
263
264
265
266
267
268
269
270
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = requests.post(\n",
    "    url + \"/load_lora_adapter\",\n",
    "    json={\n",
271
272
    "        \"lora_name\": \"lora1\",\n",
    "        \"lora_path\": lora1,\n",
273
274
275
276
277
278
279
280
281
282
    "    },\n",
    ")\n",
    "\n",
    "if response.status_code == 200:\n",
    "    print(\"LoRA adapter loaded successfully.\", response.json())\n",
    "else:\n",
    "    print(\"Failed to load LoRA adapter.\", response.json())"
   ]
  },
  {
283
   "cell_type": "markdown",
284
285
   "metadata": {},
   "source": [
286
    "Check inference output:"
287
288
289
290
291
292
293
294
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    "url = f\"http://127.0.0.1:{port}\"\n",
    "json_data = {\n",
    "    \"text\": [\n",
    "        \"List 3 countries and their capitals.\",\n",
    "        \"List 3 countries and their capitals.\",\n",
    "    ],\n",
    "    \"sampling_params\": {\"max_new_tokens\": 32, \"temperature\": 0},\n",
    "    # The first input uses lora0, and the second input uses lora1\n",
    "    \"lora_path\": [\"lora0\", \"lora1\"],\n",
    "}\n",
    "response = requests.post(\n",
    "    url + \"/generate\",\n",
    "    json=json_data,\n",
    ")\n",
    "print(f\"Output from lora0: \\n{response.json()[0]['text']}\\n\")\n",
    "print(f\"Output from lora1 (updated): \\n{response.json()[1]['text']}\\n\")"
311
312
313
314
315
316
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
317
    "Unload lora0 and replace it with a different adapter:"
318
319
320
321
322
323
324
325
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
326
327
328
329
330
    "response = requests.post(\n",
    "    url + \"/unload_lora_adapter\",\n",
    "    json={\n",
    "        \"lora_name\": \"lora0\",\n",
    "    },\n",
331
332
333
334
335
    ")\n",
    "\n",
    "response = requests.post(\n",
    "    url + \"/load_lora_adapter\",\n",
    "    json={\n",
336
337
    "        \"lora_name\": \"lora0\",\n",
    "        \"lora_path\": lora0_new,\n",
338
339
340
341
342
343
344
345
346
    "    },\n",
    ")\n",
    "\n",
    "if response.status_code == 200:\n",
    "    print(\"LoRA adapter loaded successfully.\", response.json())\n",
    "else:\n",
    "    print(\"Failed to load LoRA adapter.\", response.json())"
   ]
  },
347
348
349
350
351
352
353
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Check output again:"
   ]
  },
354
355
356
357
358
359
360
361
362
363
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = f\"http://127.0.0.1:{port}\"\n",
    "json_data = {\n",
    "    \"text\": [\n",
    "        \"List 3 countries and their capitals.\",\n",
364
    "        \"List 3 countries and their capitals.\",\n",
365
366
367
368
369
370
371
372
373
    "    ],\n",
    "    \"sampling_params\": {\"max_new_tokens\": 32, \"temperature\": 0},\n",
    "    # The first input uses lora0, and the second input uses lora1\n",
    "    \"lora_path\": [\"lora0\", \"lora1\"],\n",
    "}\n",
    "response = requests.post(\n",
    "    url + \"/generate\",\n",
    "    json=json_data,\n",
    ")\n",
374
375
    "print(f\"Output from lora0: \\n{response.json()[0]['text']}\\n\")\n",
    "print(f\"Output from lora1 (updated): \\n{response.json()[1]['text']}\\n\")"
376
377
   ]
  },
378
379
380
381
382
383
384
385
386
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### LoRA GPU Pinning"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Another advanced option is to specify adapters as `pinned` during loading. When an adapter is pinned, it is permanently assigned to one of the available GPU pool slots (as configured by `--max-loras-per-batch`) and will not be evicted from GPU memory during runtime. Instead, it remains resident until it is explicitly unloaded.\n",
    "\n",
    "This can improve performance in scenarios where the same adapter is frequently used across requests, by avoiding repeated memory transfers and reinitialization overhead. However, since GPU pool slots are limited, pinning adapters reduces the flexibility of the system to dynamically load other adapters on demand. If too many adapters are pinned, it may lead to degraded performance, or in the most extreme case (`Number of pinned adapters == max-loras-per-batch`), halt all unpinned requests. Therefore, currently SGLang limits maximal number of pinned adapters to `max-loras-per-batch - 1` to prevent unexpected starvations. \n",
    "\n",
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    "In the example below, we start a server with `lora1` loaded as pinned, `lora2` and `lora3` loaded as regular (unpinned) adapters. Please note that, we intentionally specify `lora2` and `lora3` in two different formats to demonstrate that both are supported."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "    python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
    "    --enable-lora \\\n",
    "    --cuda-graph-max-bs 8 \\\n",
416
    "    --max-loras-per-batch 3 \\\n",
417
418
419
420
421
422
    "    --max-lora-rank 256 \\\n",
    "    --lora-target-modules all \\\n",
    "    --lora-paths \\\n",
    "        {\"lora_name\":\"lora0\",\"lora_path\":\"Nutanix/Meta-Llama-3.1-8B-Instruct_lora_4_alpha_16\",\"pinned\":true} \\\n",
    "        {\"lora_name\":\"lora1\",\"lora_path\":\"algoprog/fact-generation-llama-3.1-8b-instruct-lora\"} \\\n",
    "        lora2=philschmid/code-llama-3-1-8b-text-to-sql-lora\n",
423
    "    --log-level warning\n",
424
425
426
427
428
429
430
431
432
433
434
435
436
    "    \"\"\"\n",
    ")\n",
    "\n",
    "\n",
    "url = f\"http://127.0.0.1:{port}\"\n",
    "wait_for_server(url)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can also specify adapter as pinned during dynamic adapter loading. In the example below, we reload `lora2` as pinned adapter:"
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = requests.post(\n",
    "    url + \"/unload_lora_adapter\",\n",
    "    json={\n",
    "        \"lora_name\": \"lora1\",\n",
    "    },\n",
    ")\n",
    "\n",
    "response = requests.post(\n",
    "    url + \"/load_lora_adapter\",\n",
    "    json={\n",
    "        \"lora_name\": \"lora1\",\n",
456
    "        \"lora_path\": \"algoprog/fact-generation-llama-3.1-8b-instruct-lora\",\n",
457
458
459
460
461
462
463
464
465
    "        \"pinned\": True,  # Pin the adapter to GPU\n",
    "    },\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
466
    "Verify that the results are expected:"
467
468
469
470
471
472
473
474
475
476
477
478
479
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = f\"http://127.0.0.1:{port}\"\n",
    "json_data = {\n",
    "    \"text\": [\n",
    "        \"List 3 countries and their capitals.\",\n",
    "        \"List 3 countries and their capitals.\",\n",
480
    "        \"List 3 countries and their capitals.\",\n",
481
482
483
    "    ],\n",
    "    \"sampling_params\": {\"max_new_tokens\": 32, \"temperature\": 0},\n",
    "    # The first input uses lora0, and the second input uses lora1\n",
484
    "    \"lora_path\": [\"lora0\", \"lora1\", \"lora2\"],\n",
485
486
487
488
489
    "}\n",
    "response = requests.post(\n",
    "    url + \"/generate\",\n",
    "    json=json_data,\n",
    ")\n",
490
491
492
    "print(f\"Output from lora0 (pinned): \\n{response.json()[0]['text']}\\n\")\n",
    "print(f\"Output from lora1 (pinned): \\n{response.json()[1]['text']}\\n\")\n",
    "print(f\"Output from lora2 (not pinned): \\n{response.json()[2]['text']}\\n\")"
493
494
   ]
  },
495
496
497
498
499
500
501
502
503
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Choosing LoRA Backend\n",
    "\n",
    "SGLang supports two LoRA backends that you can choose from using the `--lora-backend` argument:\n",
    "\n",
    "- `triton`: Default basic Triton-based backend.\n",
    "- `csgmv`: Chunked SGMV backend optimized for high concurrency scenarios.\n",
    "\n",
    "The `csgmv` backend was recently introduced to improve performance especially at high-concurrency scenarios. Our benchmark shows that it achieves 20% to 80% latency improvements over the basic triton backend.\n",
    "Currently it is at preview phase, we expect to make it our the default LoRA backend in future release. Before that, you can adopt it by manually setting the `--lora-backend` server config."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "    python3 -m sglang.launch_server \\\n",
    "    --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
    "    --enable-lora \\\n",
    "    --lora-backend csgmv \\\n",
    "    --max-loras-per-batch 16 \\\n",
    "    --lora-paths lora1=path/to/lora1 lora2=path/to/lora2\n",
    "    \"\"\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
546
547
548
549
550
551
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Future Works\n",
    "\n",
552
    "The development roadmap for LoRA-related features can be found in this [issue](https://github.com/sgl-project/sglang/issues/2929). Other features, including Embedding Layer, Unified Paging, Cutlass backend are still under development."
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}