bench_other.py 6.9 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
import ast
import asyncio
from collections import Counter
from concurrent.futures import ThreadPoolExecutor
from functools import partial
import json
import re
import time

import numpy as np
from tqdm import tqdm
from sglang.test.test_utils import add_common_other_args_and_parse, call_generate_lightllm, call_generate_vllm, call_generate_srt_raw
from sglang.utils import read_jsonl, dump_state_text


INVALID = -9999999


def get_answer_value(answer_str):
    answer_str = answer_str.replace(",", "")
    numbers = re.findall(r'\d+', answer_str)
    if len(numbers) < 1:
        return INVALID
    try:
        return ast.literal_eval(numbers[-1])
    except SyntaxError:
        return INVALID


def most_frequent_number(numbers):
    if not numbers:
        return None

    frequency = Counter(numbers)
    most_frequent = max(frequency, key=frequency.get)
    return most_frequent


USER_PREFIX = "[INST] "
USER_SUFFIX = " [/INST]"
ASSISTANT_PREFIX = ""
ASSISTANT_SUFFIX = " </s><s>"

# Use a low temp to make the results more deterministic and the comparison more fair.
temp = 0.001


def propose_plan(s, question, num_branches, call_generate):
    s += (USER_PREFIX +
"""Please generate a high-level plan for solving the following question. As the first step, just say what method and idea you will use to solve the question. You can reorganize the information in the question. Do not do the actual calculation. Keep your response concise and within 80 words. Question: """ + question + USER_SUFFIX)

    s += ASSISTANT_PREFIX
    comps = call_generate(s, max_tokens=256, temperature=temp, stop=None, n=num_branches)
    return [s + comp + ASSISTANT_SUFFIX for comp in comps]


def execute_plan(s, num_branches, call_generate):
    s += (USER_PREFIX +
"""The plan looks good! Now, use real numbers and do the calculation. Please solve the question step-by-step according to the high-level plan. Give me the final answer. Make your response short.""" + USER_SUFFIX)
    s += ASSISTANT_PREFIX
    comps = call_generate(s, max_tokens=256, temperature=temp, stop=None, n=num_branches)
    return [s + comp + ASSISTANT_SUFFIX for comp in comps]


def reflect_solution(s, num_branches, call_generate):
    s += (USER_PREFIX +
"""Okay. Now, evaluate your own solution and give it a score on a scale of 1 to 5. Please do rigorous check of the correctness.""" + USER_SUFFIX)
    s += ASSISTANT_PREFIX
    comps = call_generate(s, max_tokens=256, temperature=temp, stop=None, n=num_branches)
    return [s + comp + ASSISTANT_SUFFIX for comp in comps]


def get_final_answer(s, num_branches, call_generate):
    s += (USER_PREFIX +
"""Based on your reflection, do you change your mind? Now, give me the final answer after careful consideration.""" + USER_SUFFIX)
    s += ASSISTANT_PREFIX
    comps = call_generate(s, max_tokens=256, temperature=temp, stop=None, n=num_branches)
    return [s + comp + ASSISTANT_SUFFIX for comp in comps]


def tree_search(question, num_branches, call_generate):
    plan_forks = propose_plan("", question, num_branches, call_generate)

    sol_states = []
    for plan in plan_forks:
        forks = execute_plan(plan, num_branches, call_generate)
        sol_states.extend(forks)

    ref_states = []
    for sol in sol_states:
        forks = reflect_solution(sol, num_branches, call_generate)
        ref_states.extend(forks)

    solutions = []
    for sol in ref_states:
        ans = get_final_answer(sol, num_branches, call_generate)
        solutions.append(ans)

    return solutions


def main(args):
    lines = read_jsonl(args.data_path)

    # Construct prompts
    num_branches = 2
    questions = []
    labels = []
    for i in range(len(lines[:args.num_questions])):
        questions.append(lines[i]["question"])
        labels.append(get_answer_value(lines[i]["answer"]))
    assert all(l != INVALID for l in labels)
    arguments = [{"question": q, "num_branches": num_branches} for q in questions]

    # Select backend
    if args.backend == "lightllm":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_lightllm, url=url)
    elif args.backend == "vllm":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_vllm, url=url)
    elif args.backend == "srt-raw":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_srt_raw, url=url)
    elif args.backend == "guidance":
        from guidance import models, gen

        model = models.LlamaCpp("/home/ubuntu/model_weights/Llama-2-7b-chat.gguf", n_gpu_layers=-1, n_ctx=4096)

        def call_generate(prompt, temperature, max_tokens, stop, n):
            if n == 1:
                out = model + prompt + gen(name="answer",
                    max_tokens=max_tokens, temperature=temperature, stop=stop)
                return out["answer"]
            else:
                rets = []
                for i in range(n):
                    out = model + prompt + gen(name="answer",
                        max_tokens=max_tokens, temperature=temperature, stop=stop)
                    rets.append(out["answer"])
                return rets

Lianmin Zheng's avatar
Lianmin Zheng committed
144
145
146
        # warmup
        call_generate("Hello,", 1.0, 8, ".", 1)

Lianmin Zheng's avatar
Lianmin Zheng committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    # Run requests
    states = [None] * len(questions)
    def get_one_answer(i):
        states[i] = tree_search(**arguments[i], call_generate=call_generate)

    tic = time.time()
    if args.parallel == 1:
        for i in tqdm(range(len(questions))):
            get_one_answer(i)
    else:
        with ThreadPoolExecutor(args.parallel) as executor:
            executor.map(get_one_answer, list(range(len(questions))))
    latency = time.time() - tic

    answers_text = []
    for s in states:
        answers_text.append([x for xs in s for x in xs])

    preds = []
    for i in range(len(states)):
        answers = [get_answer_value(v) for v in answers_text[i]]
        preds.append(most_frequent_number(answers))

    # Compute accuracy
    acc = np.mean(np.array(preds) == np.array(labels))
    invalid = np.mean(np.array(preds) == INVALID)
    print(f"Latency: {latency:.3f}")
    print(f"Invalid: {invalid:.3f}")
    print(f"Accuracy: {acc:.3f}")

    # Write results
    dump_state_text(f"tmp_output_{args.backend}.txt", answers_text)

    with open(args.result_file, "a") as fout:
        value = {
            "task": "tree_of_thought_gsm8k",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "accuracy": round(acc, 3),
            "num_requests": args.num_questions,
            "other": {
                "num_questions": args.num_questions,
                "parallel": args.parallel,
            }
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, default="test.jsonl")
    parser.add_argument("--num-questions", type=int, default=200)
    args = add_common_other_args_and_parse(parser)
    main(args)