bench_other.py 3.84 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import json
import time
from argparse import ArgumentParser
from concurrent.futures import ThreadPoolExecutor

import requests
from sglang.test.test_utils import add_common_other_args_and_parse
from sglang.utils import dump_state_text
from tqdm import tqdm
from vllm.transformers_utils.tokenizer import get_tokenizer

from data_gen import gen_arguments


def get_generate(args):
    # Select backend
    if args.backend == "vllm":
        url = f"{args.host}:{args.port}/generate"

        def generate(prompt, max_tokens, stop=None, temperature=0, url=url, n=1):
            data = {
                "prompt": prompt,
                "temperature": temperature,
                "max_tokens": max_tokens,
                "ignore_eos": True,
                "stop": stop,
                "stream": False,
                "n": n,
            }
            res = requests.post(url, json=data)
            assert res.status_code == 200
            return res.json()["text"][0][len(prompt) :]

    elif args.backend == "guidance":
        from guidance import gen, models

        model = models.LlamaCpp(
            "/home/ubuntu/model_weights/Llama-2-7b-chat-hf/ggml-model-f16.gguf",
            n_gpu_layers=-1,
            n_ctx=4096,
        )

        def generate(prompt, max_tokens, stop=None):
            out = (
                model
                + prompt
                + gen(name="answer", max_tokens=max_tokens, temperature=0, stop=stop)
            )
            return out["answer"]

        # warmup
        for _ in range(3):
            generate("Hello!" * 10, max_tokens=64, stop=None)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")

    return generate


def multi_turns(generate, qas):
    s = ""
    for qa in qas:
        s += qa["prompt"]
        s += generate(s, max_tokens=qa["new_tokens"]) 

    return s


def main(args):
    print(args)

    tokenizer = get_tokenizer(args.tokenizer, trust_remote_code=args.trust_remote_code)

    multi_qas = gen_arguments(args, tokenizer)

    states = [None] * args.num_qa

    generate = get_generate(args)

    def get_one_answer(i):
        states[i] = multi_turns(generate=generate, **multi_qas[i])

    tic = time.time()
    if args.parallel == 1:
        for i in tqdm(range(len(multi_qas))):
            get_one_answer(i)
    else:
        with ThreadPoolExecutor(args.parallel) as executor:
            rets = executor.map(get_one_answer, list(range(len(multi_qas))))
            for _ in rets:
                pass

    latency = time.time() - tic

    # Compute accuracy
    print(f"Latency: {latency:.3f}")

    dump_state_text(f"tmp_output_{args.backend}.txt", states)

    with open(args.result_file, "a") as fout:
        value = {
Lianmin Zheng's avatar
Lianmin Zheng committed
102
            "task": "multi_turn_chat",
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "num_requests": args.num_qa,
            "num_turns": args.turns,
            "other": {
                "parallel": args.parallel,
                "output_mode": "long" if args.long else "short",
            },
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--turns", type=int, default=4)
    parser.add_argument("--num-qa", type=int, default=20)
    parser.add_argument("--min-len-q", type=int, default=256)
    parser.add_argument("--max-len-q", type=int, default=512)
    parser.add_argument("--min-len-a", type=int, default=4)
    parser.add_argument("--max-len-a", type=int, default=8)
    parser.add_argument("--tokenizer", type=str, required=True)
    parser.add_argument("--trust-remote-code", action="store_true")
    parser.add_argument("--long", action="store_true")
    args = add_common_other_args_and_parse(parser)

    if args.long:
        args.min_len_a = 256
        args.max_len_a = 512
        args.num_qa = 20
    main(args)