bench_other.py 6.47 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse
import asyncio
from concurrent.futures import ThreadPoolExecutor
import json
from functools import partial
import os
import time

import numpy as np
import pandas as pd
import tiktoken
from tqdm import tqdm
from sglang.test.test_utils import add_common_other_args_and_parse, call_generate_lightllm, call_generate_vllm, call_generate_srt_raw


choices = ["A", "B", "C", "D"]

tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")


def format_subject(subject):
    l = subject.split("_")
    s = ""
    for entry in l:
        s += " " + entry
    return s

def format_example(df, idx, include_answer=True):
    prompt = df.iloc[idx, 0]
    k = df.shape[1] - 2
    for j in range(k):
        prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j+1])
    prompt += "\nAnswer:"
    if include_answer:
        prompt += " {}\n\n".format(df.iloc[idx, k + 1])
    return prompt

def gen_prompt(train_df, subject, k=-1):
    prompt = "The following are multiple choice questions (with answers) about{}.\n\n".format(format_subject(subject))
    if k == -1:
        k = train_df.shape[0]
    for i in range(k):
        prompt += format_example(train_df, i)
    return prompt


model_initialized = None


def evaluate(args, subject, dev_df, test_df):
    prompts = []
    labels = []

    # Construct prompts
    k = args.ntrain
    train_prompt = gen_prompt(dev_df, subject, k)
    while len(tokenizer.encode(train_prompt)) > 1536:
        k -= 1
        train_prompt = gen_prompt(dev_df, subject, k)

    for i in range(test_df.shape[0]):
        prompt_end = format_example(test_df, i, include_answer=False)
        prompt = train_prompt + prompt_end
        prompts.append(prompt)

        label = test_df.iloc[i, test_df.shape[1]-1]
        labels.append(label)

    preds = [None] * len(prompts)
    max_tokens = 1

    # Select backend
    global model_initialized

    if args.backend == "lightllm":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_lightllm, url=url, stop=None)
    elif args.backend == "vllm":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_vllm, url=url, stop=None)
    elif args.backend == "srt-raw":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_srt_raw, url=url, stop=None)
    elif args.backend == "guidance":
        from guidance import models, gen

        if model_initialized is None:
            model = models.LlamaCpp("/home/ubuntu/model_weights/Llama-2-7b-chat.gguf", n_gpu_layers=-1, n_ctx=4096)
            model_initialized = model
        else:
            model = model_initialized

        def call_generate(prompt, temperature, max_tokens):
            out = model + prompt + gen(name="answer",
                max_tokens=max_tokens, temperature=0)
            return out["answer"]

Lianmin Zheng's avatar
Lianmin Zheng committed
98
99
100
        # warmup
        call_generate("Hello,", temperature=1.0, max_tokens=8)

Lianmin Zheng's avatar
Lianmin Zheng committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    elif args.backend == "lmql":
        import lmql
        model = lmql.model("meta-llama/Llama-2-7b-chat-hf",
           endpoint=f"{args.host}:{args.port}")

        @lmql.query(model=model)
        async def program(question):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < 2
            return ANSWER
            '''

        async def call_generate(prompt, temperature, max_tokens):
            return await program(question=prompt, temperature=temperature)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")

    # Run requests
    if args.backend != "lmql":
        # Use thread pool
        def get_one_answer(i):
            pred = call_generate(prompts[i], temperature=0,
                                 max_tokens=max_tokens)
            preds[i] = pred.strip()[0]

        tic = time.time()
        if args.parallel == 1:
            for i in range(len(prompts)):
                get_one_answer(i)
        else:
            with ThreadPoolExecutor(args.parallel) as executor:
                executor.map(get_one_answer, list(range(len(prompts))))
    else:
        # Use asyncio
        async def batched_call(batch_size):
            for i in range(0, len(prompts), batch_size):
                tasks = []
                for p in prompts[i:i+batch_size]:
                    tasks.append(call_generate(p,
                        temperature=0, max_tokens=max_tokens))
                rets = await asyncio.gather(*tasks)
                for j in range(len(rets)):
                    preds[i+j] = rets[j].strip()[0]

        tic = time.time()
        asyncio.run(batched_call(batch_size=args.parallel))
    latency = time.time() - tic

    # Compute accuracy
    cors = [pred == label for pred, label in zip(preds, labels)]
    acc = np.mean(cors)
    cors = np.array(cors)

    print("Average accuracy {:.3f}, latency {:.2f}, #q: {} - {}".format(
        acc, latency, len(prompts), subject))

    return cors, acc, latency


def main(args):
    subjects = sorted([f.split("_test.csv")[0] for f in os.listdir(os.path.join(args.data_dir, "test")) if "_test.csv" in f])

    all_cors = []
    all_latencies = []
    num_requests = 0

    for subject in tqdm(subjects[:args.nsub]):
        dev_df = pd.read_csv(os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None)[:args.ntrain]
        test_df = pd.read_csv(os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None)

        cors, acc, latency = evaluate(args, subject, dev_df, test_df)
        all_cors.append(cors)
        all_latencies.append(latency)
        num_requests += len(test_df)

    total_latency = np.sum(all_latencies)
    print("Total latency: {:.3f}".format(total_latency))

    weighted_acc = np.mean(np.concatenate(all_cors))
    print("Average accuracy: {:.3f}".format(weighted_acc))

    # Write results
    with open(args.result_file, "a") as fout:
        value = {
            "task": "mmlu",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(total_latency, 3),
            "accuracy": round(weighted_acc, 3),
            "num_requests": num_requests,
            "other": {
                "nsub": args.nsub,
                "parallel": args.parallel,
            }
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--ntrain", type=int, default=5)
    parser.add_argument("--data_dir", type=str, default="data")
    parser.add_argument("--nsub", type=int, default=60)
    args = add_common_other_args_and_parse(parser)
    main(args)