test_llava_low_api.py 4.7 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import multiprocessing
import time

import numpy as np
import torch
import torch.distributed as dist
from sglang.srt.hf_transformers_utils import get_processor
from sglang.srt.managers.router.infer_batch import ForwardMode
from sglang.srt.managers.router.model_runner import InputMetadata, ModelRunner
from sglang.srt.model_config import ModelConfig
from sglang.srt.utils import load_image


def init_batch_data(model, batch_size, input_len):
    req_pool_indices = model.req_to_token_pool.alloc(batch_size)
    seq_lens = torch.full((batch_size,), input_len, dtype=torch.int32, device="cuda")
    prefix_lens = torch.zeros(batch_size, dtype=torch.int32, device="cuda")
    position_ids_offsets = torch.zeros(batch_size, dtype=torch.int32, device="cuda")

    out_cache_loc = model.token_to_kv_pool.alloc(batch_size * input_len)
    for i in range(batch_size):
        model.req_to_token_pool.req_to_token[i, :input_len] = out_cache_loc[
            i * input_len : (i + 1) * input_len
        ]

    return (
        req_pool_indices,
        seq_lens,
        prefix_lens,
        position_ids_offsets,
        out_cache_loc,
    )


def prefill(model, tp_rank, params, print_logits):
    logits, _ = model.forward_extend_multi_modal(
        *params,
        False,
    )
    prob_out = torch.softmax(logits, dim=-1)
    predict_ids = torch.argmax(prob_out, dim=1, keepdim=True)
    predict_ids = predict_ids.detach().cpu().numpy()

    if print_logits and tp_rank == 0:
        print("prefill logits", logits, logits.shape)

    return predict_ids


def decode(step, model, tp_rank, batch_size, predict_ids, params, print_logits):
    (
        req_pool_indices,
        seq_lens,
        prefix_lens,
        position_ids_offsets,
        out_cache_loc,
    ) = params

    (
        out_cache_loc,
        out_cache_cont_start,
        out_cache_cont_end,
    ) = model.token_to_kv_pool.alloc_contiguous(batch_size)
    model.req_to_token_pool.req_to_token[req_pool_indices, seq_lens] = out_cache_loc
    seq_lens.add_(1)
    logits = model.forward_decode(
        torch.from_numpy(predict_ids).cuda().reshape(-1),
        req_pool_indices,
        seq_lens,
        None,
        position_ids_offsets,
        None,
        out_cache_cont_start,
        out_cache_cont_end,
    )
    prob_out = torch.softmax(logits, dim=-1)
    predict_ids = torch.argmax(prob_out, dim=1, keepdim=True)
    predict_ids = predict_ids.detach().cpu().numpy()
    if print_logits and tp_rank == 0:
        print("decode", step, logits)
    return predict_ids


def test_generate_worker(
    model_path,
    tp_rank,
    tp_size,
):
    model_config = ModelConfig(path=model_path)
    model = ModelRunner(model_config, 0.8, tp_rank, tp_size, 28888)
    # print(model.model)

    # Prepare data
    prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nDescribe this picture ASSISTANT:"
    image_path = "/home/ubuntu/sglang/test/lang/image.png"
    image = load_image(image_path)

    processor = get_processor("llava-hf/llava-1.5-7b-hf")
    input_ids = processor.tokenizer.encode(prompt)
    pixel_values = processor.image_processor(image)["pixel_values"]
    input_ids, offset = model.model.pad_input_ids(
        input_ids,
        [
            0,
        ],
    )

    params = init_batch_data(model, 1, len(input_ids))

    # inference
    output_ids = []
    prefill_params = (
        torch.tensor(np.array(input_ids)).cuda(),
        np.array(pixel_values),
115
        [None],
Lianmin Zheng's avatar
Lianmin Zheng committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        [offset],
        *params,
    )
    predict_ids = prefill(model, tp_rank=0, params=prefill_params, print_logits=False)
    output_ids.append(predict_ids[0][0])
    for i in range(16):
        predict_ids = decode(
            i,
            model,
            tp_rank=0,
            batch_size=1,
            predict_ids=predict_ids,
            params=params,
            print_logits=False,
        )
        output_ids.append(predict_ids[0][0])

    # detokenization
    output = processor.tokenizer.batch_decode(
        [output_ids], skip_special_tokens=True, clean_up_tokenization_spaces=False
    )[0]
    assert (
        output
        == "The image features a man standing on the back of a yellow taxi cab, holding"
    )


def test_generate(model_path, tp_size):
    workers = []
    for tp_rank in range(tp_size):
        proc = multiprocessing.Process(
            target=test_generate_worker,
            args=(
                model_path,
                tp_rank,
                tp_size,
            ),
        )
        proc.start()
        workers.append(proc)

    for proc in workers:
        proc.join()


if __name__ == "__main__":
    test_generate("liuhaotian/llava-v1.5-7b", 1)