"megatron/deprecated_data_utils/datasets.py" did not exist on "1dd51c0ef8bf9c81dbc1733f64f6ae0eb42af90b"
bench_other.py 6.65 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
import argparse
import ast
import json
import re
import time
Liangsheng Yin's avatar
Liangsheng Yin committed
6
7
from collections import Counter
from concurrent.futures import ThreadPoolExecutor
Lianmin Zheng's avatar
Lianmin Zheng committed
8
9
10
11

import numpy as np
from tqdm import tqdm

Liangsheng Yin's avatar
Liangsheng Yin committed
12
from sglang.test.test_utils import add_common_other_args_and_parse, get_call_generate
Liangsheng Yin's avatar
Liangsheng Yin committed
13
from sglang.utils import dump_state_text, read_jsonl
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
16
17
18
19

INVALID = -9999999


def get_answer_value(answer_str):
    answer_str = answer_str.replace(",", "")
Liangsheng Yin's avatar
Liangsheng Yin committed
20
    numbers = re.findall(r"\d+", answer_str)
Lianmin Zheng's avatar
Lianmin Zheng committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    if len(numbers) < 1:
        return INVALID
    try:
        return ast.literal_eval(numbers[-1])
    except SyntaxError:
        return INVALID


def most_frequent_number(numbers):
    if not numbers:
        return None

    frequency = Counter(numbers)
    most_frequent = max(frequency, key=frequency.get)
    return most_frequent


USER_PREFIX = "[INST] "
USER_SUFFIX = " [/INST]"
ASSISTANT_PREFIX = ""
ASSISTANT_SUFFIX = " </s><s>"

# Use a low temp to make the results more deterministic and the comparison more fair.
temp = 0.001


def propose_plan(s, question, num_branches, call_generate):
Liangsheng Yin's avatar
Liangsheng Yin committed
48
49
50
51
52
53
    s += (
        USER_PREFIX
        + """Please generate a high-level plan for solving the following question. As the first step, just say what method and idea you will use to solve the question. You can reorganize the information in the question. Do not do the actual calculation. Keep your response concise and within 80 words. Question: """
        + question
        + USER_SUFFIX
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
54
55

    s += ASSISTANT_PREFIX
Liangsheng Yin's avatar
Liangsheng Yin committed
56
57
58
    comps = call_generate(
        s, max_tokens=256, temperature=temp, stop=None, n=num_branches
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
59
60
61
62
    return [s + comp + ASSISTANT_SUFFIX for comp in comps]


def execute_plan(s, num_branches, call_generate):
Liangsheng Yin's avatar
Liangsheng Yin committed
63
64
65
66
67
    s += (
        USER_PREFIX
        + """The plan looks good! Now, use real numbers and do the calculation. Please solve the question step-by-step according to the high-level plan. Give me the final answer. Make your response short."""
        + USER_SUFFIX
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
68
    s += ASSISTANT_PREFIX
Liangsheng Yin's avatar
Liangsheng Yin committed
69
70
71
    comps = call_generate(
        s, max_tokens=256, temperature=temp, stop=None, n=num_branches
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
72
73
74
75
    return [s + comp + ASSISTANT_SUFFIX for comp in comps]


def reflect_solution(s, num_branches, call_generate):
Liangsheng Yin's avatar
Liangsheng Yin committed
76
77
78
79
80
    s += (
        USER_PREFIX
        + """Okay. Now, evaluate your own solution and give it a score on a scale of 1 to 5. Please do rigorous check of the correctness."""
        + USER_SUFFIX
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
81
    s += ASSISTANT_PREFIX
Liangsheng Yin's avatar
Liangsheng Yin committed
82
83
84
    comps = call_generate(
        s, max_tokens=256, temperature=temp, stop=None, n=num_branches
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
85
86
87
88
    return [s + comp + ASSISTANT_SUFFIX for comp in comps]


def get_final_answer(s, num_branches, call_generate):
Liangsheng Yin's avatar
Liangsheng Yin committed
89
90
91
92
93
    s += (
        USER_PREFIX
        + """Based on your reflection, do you change your mind? Now, give me the final answer after careful consideration."""
        + USER_SUFFIX
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
94
    s += ASSISTANT_PREFIX
Liangsheng Yin's avatar
Liangsheng Yin committed
95
96
97
    comps = call_generate(
        s, max_tokens=256, temperature=temp, stop=None, n=num_branches
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    return [s + comp + ASSISTANT_SUFFIX for comp in comps]


def tree_search(question, num_branches, call_generate):
    plan_forks = propose_plan("", question, num_branches, call_generate)

    sol_states = []
    for plan in plan_forks:
        forks = execute_plan(plan, num_branches, call_generate)
        sol_states.extend(forks)

    ref_states = []
    for sol in sol_states:
        forks = reflect_solution(sol, num_branches, call_generate)
        ref_states.extend(forks)

    solutions = []
    for sol in ref_states:
        ans = get_final_answer(sol, num_branches, call_generate)
        solutions.append(ans)

    return solutions


def main(args):
    lines = read_jsonl(args.data_path)

    # Construct prompts
    num_branches = 2
    questions = []
    labels = []
Liangsheng Yin's avatar
Liangsheng Yin committed
129
    for i in range(len(lines[: args.num_questions])):
Lianmin Zheng's avatar
Lianmin Zheng committed
130
131
132
133
134
135
        questions.append(lines[i]["question"])
        labels.append(get_answer_value(lines[i]["answer"]))
    assert all(l != INVALID for l in labels)
    arguments = [{"question": q, "num_branches": num_branches} for q in questions]

    # Select backend
Liangsheng Yin's avatar
Liangsheng Yin committed
136
    call_generate = get_call_generate(args)
Lianmin Zheng's avatar
Lianmin Zheng committed
137

Lianmin Zheng's avatar
Lianmin Zheng committed
138
139
    # Run requests
    states = [None] * len(questions)
Liangsheng Yin's avatar
Liangsheng Yin committed
140

141
    tic = time.perf_counter()
Liangsheng Yin's avatar
Liangsheng Yin committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    if args.backend != "lmql":

        def get_one_answer(i):
            states[i] = tree_search(**arguments[i], call_generate=call_generate)

        if args.parallel == 1:
            for i in tqdm(range(len(questions))):
                get_one_answer(i)
        else:
            with ThreadPoolExecutor(args.parallel) as executor:
                list(
                    tqdm(
                        executor.map(get_one_answer, list(range(len(questions)))),
                        total=len(questions),
                    )
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
159
    else:
Liangsheng Yin's avatar
Liangsheng Yin committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        import asyncio

        from lmql_funcs import tree_search_async

        async def get_one_answer_async(i):
            states[i] = await tree_search_async(
                **arguments[i], call_generate=call_generate
            )

        batches = [
            [] for _ in range((len(questions) + args.parallel - 1) // args.parallel)
        ]
        for i in range(len(questions)):
            batches[i // args.parallel].append(i)

        loop = asyncio.get_event_loop()
        for bt in tqdm(batches):
            tasks = [get_one_answer_async(k) for k in bt]
            loop.run_until_complete(asyncio.gather(*tasks))

180
    latency = time.perf_counter() - tic
Lianmin Zheng's avatar
Lianmin Zheng committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

    answers_text = []
    for s in states:
        answers_text.append([x for xs in s for x in xs])

    preds = []
    for i in range(len(states)):
        answers = [get_answer_value(v) for v in answers_text[i]]
        preds.append(most_frequent_number(answers))

    # Compute accuracy
    acc = np.mean(np.array(preds) == np.array(labels))
    invalid = np.mean(np.array(preds) == INVALID)
    print(f"Latency: {latency:.3f}")
    print(f"Invalid: {invalid:.3f}")
    print(f"Accuracy: {acc:.3f}")

    # Write results
    dump_state_text(f"tmp_output_{args.backend}.txt", answers_text)

    with open(args.result_file, "a") as fout:
        value = {
            "task": "tree_of_thought_gsm8k",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "accuracy": round(acc, 3),
            "num_requests": args.num_questions,
            "other": {
                "num_questions": args.num_questions,
                "parallel": args.parallel,
Liangsheng Yin's avatar
Liangsheng Yin committed
212
            },
Lianmin Zheng's avatar
Lianmin Zheng committed
213
214
215
216
217
218
219
220
221
222
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, default="test.jsonl")
    parser.add_argument("--num-questions", type=int, default=200)
    args = add_common_other_args_and_parse(parser)
    main(args)