"git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "af5647748a3046467e5b65e839d27393b04274d3"
embedding_model.ipynb 4.12 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Embedding Model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Embedding server is ready. Proceeding with the next steps.\n"
     ]
    }
   ],
   "source": [
    "import subprocess\n",
    "import time\n",
    "import requests\n",
    "\n",
    "# Equivalent to running this in the shell:\n",
    "# python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct --port 30010 --host 0.0.0.0 --is-embedding --log-level error\n",
    "embedding_process = subprocess.Popen(\n",
    "    [\n",
    "        \"python\",\n",
    "        \"-m\",\n",
    "        \"sglang.launch_server\",\n",
    "        \"--model-path\",\n",
    "        \"Alibaba-NLP/gte-Qwen2-7B-instruct\",\n",
    "        \"--port\",\n",
    "        \"30010\",\n",
    "        \"--host\",\n",
    "        \"0.0.0.0\",\n",
    "        \"--is-embedding\",\n",
    "        \"--log-level\",\n",
    "        \"error\",\n",
    "    ],\n",
    "    text=True,\n",
    "    stdout=subprocess.DEVNULL,\n",
    "    stderr=subprocess.DEVNULL,\n",
    ")\n",
    "\n",
    "while True:\n",
    "    try:\n",
    "        response = requests.get(\n",
    "            \"http://localhost:30010/v1/models\",\n",
    "            headers={\"Authorization\": \"Bearer None\"},\n",
    "        )\n",
    "        if response.status_code == 200:\n",
    "            break\n",
    "    except requests.exceptions.RequestException:\n",
    "        time.sleep(1)\n",
    "\n",
    "print(\"Embedding server is ready. Proceeding with the next steps.\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Use Curl"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[0.0083160400390625, 0.0006804466247558594, -0.00809478759765625, -0.0006995201110839844, 0.0143890380859375, -0.0090179443359375, 0.01238250732421875, 0.00209808349609375, 0.0062103271484375, -0.003047943115234375]\n"
     ]
    }
   ],
   "source": [
    "# Get the first 10 elements of the embedding\n",
    "\n",
    "! curl -s http://localhost:30010/v1/embeddings \\\n",
    "  -H \"Content-Type: application/json\" \\\n",
    "  -H \"Authorization: Bearer None\" \\\n",
    "  -d '{\"model\": \"Alibaba-NLP/gte-Qwen2-7B-instruct\", \"input\": \"Once upon a time\"}' \\\n",
    "  | python3 -c \"import sys, json; print(json.load(sys.stdin)['data'][0]['embedding'][:10])\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using OpenAI Compatible API"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[0.00603485107421875, -0.0190582275390625, -0.01273345947265625, 0.01552581787109375, 0.0066680908203125, -0.0135955810546875, 0.01131439208984375, 0.0013713836669921875, -0.0089874267578125, 0.021759033203125]\n"
     ]
    }
   ],
   "source": [
    "import openai\n",
    "\n",
    "client = openai.Client(\n",
    "    base_url=\"http://127.0.0.1:30010/v1\", api_key=\"None\"\n",
    ")\n",
    "\n",
    "# Text embedding example\n",
    "response = client.embeddings.create(\n",
    "    model=\"Alibaba-NLP/gte-Qwen2-7B-instruct\",\n",
    "    input=\"How are you today\",\n",
    ")\n",
    "\n",
    "embedding = response.data[0].embedding[:10]\n",
    "print(embedding)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "AlphaMeemory",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}