"projects/MT5/layers/lm_head_layer.py" did not exist on "fd158e88e82c3fa848017c62a7eccb49a5c64f78"
http_qwen_llava_test.py 3.48 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
"""
Usage:
# Installing latest llava-next: pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
# Installing latest sglang.

# Endpoint Service CLI: 
# python -m sglang.launch_server --model-path lmms-lab/llava-next-72b --tokenizer-path lmms-lab/llavanext-qwen-tokenizer --port=30000 --host="127.0.0.1" --tp-size=4

python3 http_qwen_llava_test.py

Output:
"Two children pose with a large teddy bear, one holding a smaller stuffed bear, in a room with an American flag and potted plants."
"""

import argparse
import asyncio
import json
import time
import copy

import aiohttp
import requests

from llava.conversation import (
    default_conversation,
    conv_templates,
    SeparatorStyle,
    conv_llava_llama_3,
    conv_qwen,
)


async def send_request(url, data, delay=0):
    await asyncio.sleep(delay)
    async with aiohttp.ClientSession() as session:
        async with session.post(url, json=data) as resp:
            output = await resp.json()
    return output


async def test_concurrent(args):
    url = f"{args.host}:{args.port}"

    prompt = "<image>\nPlease generate caption towards this image."
    conv_template = copy.deepcopy(conv_qwen)
    conv_template.append_message(role="user", message=prompt)
    prompt_with_template = conv_template.get_prompt()
    response = []
    for i in range(1):
        response.append(
            send_request(
                url + "/generate",
                {
                    "text": prompt_with_template,
                    "image_data": "https://farm4.staticflickr.com/3175/2653711032_804ff86d81_z.jpg",
                    "sampling_params": {
                        "max_new_tokens": 1024,
                        "temperature": 0,
                        "top_p": 1.0,
                        "presence_penalty": 2,
                        "frequency_penalty": 2,
                        "stop": "<|im_end|>",
                    },
                },
            )
        )

    rets = await asyncio.gather(*response)
    for ret in rets:
        print(ret["text"])


def test_streaming(args):
    url = f"{args.host}:{args.port}"
    prompt = "<image>\nPlease generate caption towards this image."
    conv_template = copy.deepcopy(conv_qwen)
    conv_template.append_message(role="user", message=prompt)
    prompt_with_template = conv_template.get_prompt()
    pload = {
        "text": prompt_with_template,
        "sampling_params": {
            "max_new_tokens": 1024,
            "temperature": 0,
            "top_p": 1.0,
            "presence_penalty": 2,
            "frequency_penalty": 2,
            "stop": "<|im_end|>",
        },
        "image_data": "https://farm4.staticflickr.com/3175/2653711032_804ff86d81_z.jpg",
        "stream": True,
    }
    response = requests.post(
        url + "/generate",
        json=pload,
        stream=True,
    )

    prev = 0
    for chunk in response.iter_lines(decode_unicode=False):
        chunk = chunk.decode("utf-8")
        if chunk and chunk.startswith("data:"):
            if chunk == "data: [DONE]":
                break
            data = json.loads(chunk[5:].strip("\n"))
            output = data["text"].strip()
            print(output[prev:], end="", flush=True)
            prev = len(output)
    print("")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    args = parser.parse_args()
    # asyncio.run(test_concurrent(args))
    test_streaming(args)