test_nightly_vlms_perf.py 5.68 KB
Newer Older
Mick's avatar
Mick committed
1
2
3
4
5
6
7
8
9
10
import os
import subprocess
import unittest
import warnings

from sglang.bench_one_batch_server import BenchmarkResult
from sglang.srt.utils import kill_process_tree
from sglang.test.test_utils import (
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
11
    ModelLaunchSettings,
Mick's avatar
Mick committed
12
13
14
15
16
17
18
19
20
21
22
    _parse_int_list_env,
    is_in_ci,
    parse_models,
    popen_launch_server,
    write_github_step_summary,
)

PROFILE_DIR = "performance_profiles_vlms"

MODEL_DEFAULTS = [
    # Keep conservative defaults. Can be overridden by env NIGHTLY_VLM_MODELS
23
24
25
26
27
28
29
    ModelLaunchSettings(
        "Qwen/Qwen2.5-VL-7B-Instruct",
        extra_args=["--mem-fraction-static=0.7"],
    ),
    ModelLaunchSettings(
        "google/gemma-3-27b-it",
    ),
Mick's avatar
Mick committed
30
31
32
33
34
35
36
37
38
39
40
41
    # "OpenGVLab/InternVL2_5-2B",
    # buggy in official transformers impl
    # "openbmb/MiniCPM-V-2_6",
]


class TestNightlyVLMModelsPerformance(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        warnings.filterwarnings(
            "ignore", category=ResourceWarning, message="unclosed.*socket"
        )
42
43
44
45
46
47
48
49
50
51
52
53

        nightly_vlm_models_str = os.environ.get("NIGHTLY_VLM_MODELS")
        if nightly_vlm_models_str:
            cls.models = []
            model_paths = parse_models(nightly_vlm_models_str)
            for model_path in model_paths:
                cls.models.append(
                    ModelLaunchSettings(model_path, extra_args=VLM_EXTRA_ARGS)
                )
        else:
            cls.models = MODEL_DEFAULTS

Mick's avatar
Mick committed
54
55
56
57
58
59
60
61
62
63
        cls.base_url = DEFAULT_URL_FOR_TEST

        cls.batch_sizes = _parse_int_list_env("NIGHTLY_VLM_BATCH_SIZES", "1,1,2,8,16")
        cls.input_lens = tuple(_parse_int_list_env("NIGHTLY_VLM_INPUT_LENS", "4096"))
        cls.output_lens = tuple(_parse_int_list_env("NIGHTLY_VLM_OUTPUT_LENS", "512"))
        cls.full_report = f"## {cls.__name__}\n" + BenchmarkResult.help_str()

    def test_bench_one_batch(self):
        all_benchmark_results = []

64
        for model_setup in self.models:
Mick's avatar
Mick committed
65
            benchmark_results = []
66
            with self.subTest(model=model_setup.model_path):
Mick's avatar
Mick committed
67
                process = popen_launch_server(
68
                    model=model_setup.model_path,
Mick's avatar
Mick committed
69
                    base_url=self.base_url,
70
                    other_args=model_setup.extra_args,
Mick's avatar
Mick committed
71
72
73
74
                    timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
                )
                try:
                    # Run bench_one_batch_server against the launched server
75
                    profile_filename = f"{model_setup.model_path.replace('/', '_')}"
Mick's avatar
Mick committed
76
77
78
79
                    # path for this run
                    profile_path_prefix = os.path.join(PROFILE_DIR, profile_filename)

                    # JSON output file for this model
80
81
82
                    json_output_file = (
                        f"results_{model_setup.model_path.replace('/', '_')}.json"
                    )
Mick's avatar
Mick committed
83
84
85
86
87

                    command = [
                        "python3",
                        "-m",
                        "sglang.bench_one_batch_server",
88
                        f"--model={model_setup.model_path}",
Mick's avatar
Mick committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
                        "--base-url",
                        self.base_url,
                        "--batch-size",
                        *[str(x) for x in self.batch_sizes],
                        "--input-len",
                        *[str(x) for x in self.input_lens],
                        "--output-len",
                        *[str(x) for x in self.output_lens],
                        "--trust-remote-code",
                        "--dataset-name=mmmu",
                        "--profile",
                        "--profile-by-stage",
                        f"--profile-filename-prefix={profile_path_prefix}",
                        "--show-report",
                        f"--output-path={json_output_file}",
                        "--no-append-to-github-summary",
                    ]

                    print(f"Running command: {' '.join(command)}")
                    result = subprocess.run(command, capture_output=True, text=True)

                    if result.returncode != 0:
111
112
113
                        print(
                            f"Error running benchmark for {model_setup.model_path} with batch size:"
                        )
Mick's avatar
Mick committed
114
115
116
117
                        print(result.stderr)
                        # Continue to next batch size even if one fails
                        continue

118
                    print(f"Output for {model_setup.model_path} with batch size:")
Mick's avatar
Mick committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
                    print(result.stdout)

                    # Load and deserialize JSON results
                    if os.path.exists(json_output_file):
                        import json

                        with open(json_output_file, "r") as f:
                            json_data = json.load(f)

                        # Convert JSON data to BenchmarkResult objects
                        for data in json_data:
                            benchmark_result = BenchmarkResult(**data)
                            all_benchmark_results.append(benchmark_result)
                            benchmark_results.append(benchmark_result)

                        print(
                            f"Loaded {len(benchmark_results)} benchmark results from {json_output_file}"
                        )

                    else:
                        print(f"Warning: JSON output file {json_output_file} not found")

                finally:
                    kill_process_tree(process.pid)

                report_part = BenchmarkResult.generate_markdown_report(
                    PROFILE_DIR, benchmark_results
                )
                self.full_report += report_part + "\n"

        if is_in_ci():
            write_github_step_summary(self.full_report)


if __name__ == "__main__":
    unittest.main()