test_nightly_vlms_mmmu_eval.py 4.52 KB
Newer Older
Mick's avatar
Mick committed
1
2
3
import json
import unittest
import warnings
4
from functools import partial
Mick's avatar
Mick committed
5
6
7
8
9
10
11
12
from types import SimpleNamespace

from sglang.srt.utils import kill_process_tree
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    ModelEvalMetrics,
13
    ModelLaunchSettings,
Mick's avatar
Mick committed
14
15
16
17
18
19
20
    check_evaluation_test_results,
    popen_launch_server,
    write_results_to_json,
)

MODEL_THRESHOLDS = {
    # Conservative thresholds on 100 MMMU samples, especially for latency thresholds
21
22
    ModelLaunchSettings("deepseek-ai/deepseek-vl2-small"): ModelEvalMetrics(
        0.330, 56.1
Mick's avatar
Mick committed
23
    ),
24
25
26
27
28
29
30
31
32
    ModelLaunchSettings("deepseek-ai/Janus-Pro-7B"): ModelEvalMetrics(0.285, 40.3),
    ModelLaunchSettings(
        "Efficient-Large-Model/NVILA-Lite-2B-hf-0626"
    ): ModelEvalMetrics(0.305, 23.8),
    ModelLaunchSettings("google/gemma-3-4b-it"): ModelEvalMetrics(0.360, 10.9),
    ModelLaunchSettings("google/gemma-3n-E4B-it"): ModelEvalMetrics(0.360, 15.3),
    ModelLaunchSettings("mistral-community/pixtral-12b"): ModelEvalMetrics(0.360, 16.6),
    ModelLaunchSettings("moonshotai/Kimi-VL-A3B-Instruct"): ModelEvalMetrics(
        0.330, 22.3
Mick's avatar
Mick committed
33
    ),
34
35
36
37
38
39
40
41
42
43
    ModelLaunchSettings("openbmb/MiniCPM-o-2_6"): ModelEvalMetrics(0.330, 29.3),
    ModelLaunchSettings("openbmb/MiniCPM-v-2_6"): ModelEvalMetrics(0.270, 24.5),
    ModelLaunchSettings("OpenGVLab/InternVL2_5-2B"): ModelEvalMetrics(0.300, 14.0),
    ModelLaunchSettings("Qwen/Qwen2-VL-7B-Instruct"): ModelEvalMetrics(0.310, 83.3),
    ModelLaunchSettings("Qwen/Qwen2.5-VL-7B-Instruct"): ModelEvalMetrics(0.340, 31.9),
    ModelLaunchSettings(
        "unsloth/Mistral-Small-3.1-24B-Instruct-2503"
    ): ModelEvalMetrics(0.310, 16.7),
    ModelLaunchSettings("XiaomiMiMo/MiMo-VL-7B-RL"): ModelEvalMetrics(0.28, 32.0),
    ModelLaunchSettings("zai-org/GLM-4.1V-9B-Thinking"): ModelEvalMetrics(0.280, 30.4),
Mick's avatar
Mick committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
}


class TestNightlyVLMMmmuEval(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.models = list(MODEL_THRESHOLDS.keys())
        cls.base_url = DEFAULT_URL_FOR_TEST

    def test_mmmu_vlm_models(self):
        warnings.filterwarnings(
            "ignore", category=ResourceWarning, message="unclosed.*socket"
        )
        is_first = True
        all_results = []

        for model in self.models:
            model_path = model.model_path
            with self.subTest(model=model_path):
                process = popen_launch_server(
                    model=model_path,
                    base_url=self.base_url,
                    other_args=model.extra_args,
                    timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
                )
                try:
                    args = SimpleNamespace(
                        base_url=self.base_url,
                        model=model_path,
                        eval_name="mmmu",
                        num_examples=100,
                        num_threads=64,
                        max_tokens=30,
                    )

                    args.return_latency = True

                    metrics, latency = run_eval(args)

                    metrics["score"] = round(metrics["score"], 4)
                    metrics["latency"] = round(latency, 4)
                    print(
                        f"{'=' * 42}\n{model_path} - metrics={metrics} score={metrics['score']}\n{'=' * 42}\n"
                    )

                    write_results_to_json(model_path, metrics, "w" if is_first else "a")
                    is_first = False

                    all_results.append(
                        (model_path, metrics["score"], metrics["latency"])
                    )
                finally:
                    kill_process_tree(process.pid)

        try:
            with open("results.json", "r") as f:
                print("\nFinal Results from results.json:")
                print(json.dumps(json.load(f), indent=2))
        except Exception as e:
            print(f"Error reading results: {e}")

        model_accuracy_thresholds = {
            model.model_path: threshold.accuracy
            for model, threshold in MODEL_THRESHOLDS.items()
        }
        model_latency_thresholds = {
            model.model_path: threshold.eval_time
            for model, threshold in MODEL_THRESHOLDS.items()
        }
        check_evaluation_test_results(
            all_results,
            self.__class__.__name__,
            model_accuracy_thresholds=model_accuracy_thresholds,
            model_latency_thresholds=model_latency_thresholds,
        )


if __name__ == "__main__":
    unittest.main()