send_request.ipynb 17.3 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Quick Start: Launch A Server and Send Requests\n",
    "\n",
    "This notebook provides a quick-start guide for using SGLang after installation."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch a server\n",
    "\n",
    "This code block is equivalent to executing \n",
    "\n",
    "```bash\n",
    "python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
    "--port 30000 --host 0.0.0.0\n",
    "```\n",
    "\n",
    "in your command line and wait for the server to be ready."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:46:13.611212Z",
     "iopub.status.busy": "2024-11-01T02:46:13.611093Z",
     "iopub.status.idle": "2024-11-01T02:46:42.810261Z",
     "shell.execute_reply": "2024-11-01T02:46:42.809147Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/home/chenyang/miniconda3/envs/AlphaMeemory/lib/python3.11/site-packages/transformers/utils/hub.py:128: FutureWarning: Using `TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:18] server_args=ServerArgs(model_path='meta-llama/Meta-Llama-3.1-8B-Instruct', tokenizer_path='meta-llama/Meta-Llama-3.1-8B-Instruct', tokenizer_mode='auto', skip_tokenizer_init=False, load_format='auto', trust_remote_code=False, dtype='auto', kv_cache_dtype='auto', quantization=None, context_length=None, device='cuda', served_model_name='meta-llama/Meta-Llama-3.1-8B-Instruct', chat_template=None, is_embedding=False, host='0.0.0.0', port=30000, mem_fraction_static=0.88, max_running_requests=None, max_total_tokens=None, chunked_prefill_size=8192, max_prefill_tokens=16384, schedule_policy='lpm', schedule_conservativeness=1.0, tp_size=1, stream_interval=1, random_seed=706578968, constrained_json_whitespace_pattern=None, decode_log_interval=40, log_level='info', log_level_http=None, log_requests=False, show_time_cost=False, api_key=None, file_storage_pth='SGLang_storage', enable_cache_report=False, watchdog_timeout=600, dp_size=1, load_balance_method='round_robin', dist_init_addr=None, nnodes=1, node_rank=0, json_model_override_args='{}', enable_double_sparsity=False, ds_channel_config_path=None, ds_heavy_channel_num=32, ds_heavy_token_num=256, ds_heavy_channel_type='qk', ds_sparse_decode_threshold=4096, lora_paths=None, max_loras_per_batch=8, attention_backend='flashinfer', sampling_backend='flashinfer', grammar_backend='outlines', disable_flashinfer=False, disable_flashinfer_sampling=False, disable_radix_cache=False, disable_regex_jump_forward=False, disable_cuda_graph=False, disable_cuda_graph_padding=False, disable_disk_cache=False, disable_custom_all_reduce=False, disable_mla=False, disable_penalizer=False, disable_nan_detection=False, enable_overlap_schedule=False, enable_mixed_chunk=False, enable_torch_compile=False, torch_compile_max_bs=32, cuda_graph_max_bs=160, torchao_config='', enable_p2p_check=False, triton_attention_reduce_in_fp32=False, num_continuous_decode_steps=1)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/home/chenyang/miniconda3/envs/AlphaMeemory/lib/python3.11/site-packages/transformers/utils/hub.py:128: FutureWarning: Using `TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.\n",
      "  warnings.warn(\n",
      "/home/chenyang/miniconda3/envs/AlphaMeemory/lib/python3.11/site-packages/transformers/utils/hub.py:128: FutureWarning: Using `TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:24 TP0] Init torch distributed begin.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:24 TP0] Load weight begin. avail mem=47.27 GB\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:25 TP0] lm_eval is not installed, GPTQ may not be usable\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO 10-31 19:46:26 weight_utils.py:243] Using model weights format ['*.safetensors']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\r",
      "Loading safetensors checkpoint shards:   0% Completed | 0/4 [00:00<?, ?it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\r",
      "Loading safetensors checkpoint shards:  25% Completed | 1/4 [00:00<00:01,  2.50it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\r",
      "Loading safetensors checkpoint shards:  50% Completed | 2/4 [00:00<00:00,  2.39it/s]\n",
      "\r",
      "Loading safetensors checkpoint shards:  75% Completed | 3/4 [00:00<00:00,  3.45it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\r",
      "Loading safetensors checkpoint shards: 100% Completed | 4/4 [00:01<00:00,  2.95it/s]\n",
      "\r",
      "Loading safetensors checkpoint shards: 100% Completed | 4/4 [00:01<00:00,  2.90it/s]\n",
      "\n",
      "[2024-10-31 19:46:28 TP0] Load weight end. type=LlamaForCausalLM, dtype=torch.bfloat16, avail mem=32.22 GB\n",
      "[2024-10-31 19:46:28 TP0] Memory pool end. avail mem=4.60 GB\n",
      "[2024-10-31 19:46:28 TP0] Capture cuda graph begin. This can take up to several minutes.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:36 TP0] max_total_num_tokens=217512, max_prefill_tokens=16384, max_running_requests=2049, context_len=131072\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:36] INFO:     Started server process [1548791]\n",
      "[2024-10-31 19:46:36] INFO:     Waiting for application startup.\n",
      "[2024-10-31 19:46:36] INFO:     Application startup complete.\n",
      "[2024-10-31 19:46:36] INFO:     Uvicorn running on http://0.0.0.0:30000 (Press CTRL+C to quit)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:37] INFO:     127.0.0.1:46022 - \"GET /v1/models HTTP/1.1\" 200 OK\n",
      "[2024-10-31 19:46:37] INFO:     127.0.0.1:46028 - \"GET /get_model_info HTTP/1.1\" 200 OK\n",
      "[2024-10-31 19:46:37 TP0] Prefill batch. #new-seq: 1, #new-token: 7, #cached-token: 0, cache hit rate: 0.00%, token usage: 0.00, #running-req: 0, #queue-req: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:38] INFO:     127.0.0.1:46042 - \"POST /generate HTTP/1.1\" 200 OK\n",
      "[2024-10-31 19:46:38] The server is fired up and ready to roll!\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'><br><br>                    NOTE: Typically, the server runs in a separate terminal.<br>                    In this notebook, we run the server and notebook code together, so their outputs are combined.<br>                    To improve clarity, the server logs are displayed in the original black color, while the notebook outputs are highlighted in blue.<br>                    </strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
    "\n",
    "server_process = execute_shell_command(\n",
    "\"\"\"\n",
    "python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
    "--port 30000 --host 0.0.0.0\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(\"http://localhost:30000\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Send a Request\n",
    "\n",
    "Once the server is running, you can send test requests using curl. The server implements the [OpenAI-compatible API](https://platform.openai.com/docs/api-reference/chat)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:46:42.813656Z",
     "iopub.status.busy": "2024-11-01T02:46:42.813354Z",
     "iopub.status.idle": "2024-11-01T02:46:51.436613Z",
     "shell.execute_reply": "2024-11-01T02:46:51.435965Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:42 TP0] Prefill batch. #new-seq: 1, #new-token: 46, #cached-token: 1, cache hit rate: 1.85%, token usage: 0.00, #running-req: 0, #queue-req: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:43 TP0] Decode batch. #running-req: 1, #token: 80, token usage: 0.00, gen throughput (token/s): 5.40, #queue-req: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:44 TP0] Decode batch. #running-req: 1, #token: 120, token usage: 0.00, gen throughput (token/s): 42.48, #queue-req: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:45 TP0] Decode batch. #running-req: 1, #token: 160, token usage: 0.00, gen throughput (token/s): 42.37, #queue-req: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:46 TP0] Decode batch. #running-req: 1, #token: 200, token usage: 0.00, gen throughput (token/s): 42.33, #queue-req: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:47 TP0] Decode batch. #running-req: 1, #token: 240, token usage: 0.00, gen throughput (token/s): 42.34, #queue-req: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:48 TP0] Decode batch. #running-req: 1, #token: 280, token usage: 0.00, gen throughput (token/s): 42.28, #queue-req: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:49 TP0] Decode batch. #running-req: 1, #token: 320, token usage: 0.00, gen throughput (token/s): 42.28, #queue-req: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:50 TP0] Decode batch. #running-req: 1, #token: 360, token usage: 0.00, gen throughput (token/s): 42.24, #queue-req: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:51] INFO:     127.0.0.1:46046 - \"POST /v1/chat/completions HTTP/1.1\" 200 OK\n",
      "{\"id\":\"f9761ee1b1444bd7a640286884a90842\",\"object\":\"chat.completion\",\"created\":1730429211,\"model\":\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\"choices\":[{\"index\":0,\"message\":{\"role\":\"assistant\",\"content\":\"LLM stands for Large Language Model. It's a type of artificial intelligence (AI) designed to process and comprehend human language in a way that's similar to how humans do.\\n\\nLarge Language Models are trained on massive amounts of text data, which allows them to learn patterns and relationships in language. This training enables them to generate text, answer questions, summarize content, and even engage in conversation.\\n\\nSome key characteristics of LLMs include:\\n\\n1. **Language understanding**: LLMs can comprehend the meaning of text, including nuances like idioms, sarcasm, and figurative language.\\n2. **Contextual awareness**: LLMs can understand the context in which a piece of text is written, including the topic, tone, and intent.\\n3. **Generative capabilities**: LLMs can generate text, including entire articles, conversations, or even creative writing like stories or poetry.\\n4. **Continuous learning**: LLMs can learn from new data and update their understanding of language over time.\\n\\nLLMs are used in a wide range of applications, including:\\n\\n1. **Virtual assistants**: LLMs power virtual assistants like Siri, Alexa, and Google Assistant.\\n2. **Chatbots**: LLMs are used to create chatbots that can engage with customers and provide support.\\n3. **Language translation**: LLMs can translate text from one language to another with high accuracy.\\n4. **Content generation**: LLMs can generate content, such as articles, social media posts, and product descriptions.\\n5. **Research and analysis**: LLMs can help researchers analyze and understand large amounts of text data.\\n\\nIn the context of our conversation, I'm a Large Language Model designed to provide helpful and informative responses to your questions!\"},\"logprobs\":null,\"finish_reason\":\"stop\",\"matched_stop\":128009}],\"usage\":{\"prompt_tokens\":47,\"total_tokens\":400,\"completion_tokens\":353,\"prompt_tokens_details\":null}}"
     ]
    }
   ],
   "source": [
    "!curl http://localhost:30000/v1/chat/completions \\\n",
    "  -H \"Content-Type: application/json\" \\\n",
    "  -H \"Authorization: Bearer None\" \\\n",
    "  -d '{\"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\", \"messages\": [{\"role\": \"system\", \"content\": \"You are a helpful assistant.\"}, {\"role\": \"user\", \"content\": \"What is a LLM?\"}]}'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using OpenAI Python Client\n",
    "\n",
    "You can also use the OpenAI Python API library to send requests."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:46:51.439372Z",
     "iopub.status.busy": "2024-11-01T02:46:51.439178Z",
     "iopub.status.idle": "2024-11-01T02:46:52.895776Z",
     "shell.execute_reply": "2024-11-01T02:46:52.895318Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:51 TP0] Prefill batch. #new-seq: 1, #new-token: 20, #cached-token: 29, cache hit rate: 29.13%, token usage: 0.00, #running-req: 0, #queue-req: 0\n",
      "[2024-10-31 19:46:51 TP0] Decode batch. #running-req: 1, #token: 50, token usage: 0.00, gen throughput (token/s): 27.57, #queue-req: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:46:52 TP0] Decode batch. #running-req: 1, #token: 90, token usage: 0.00, gen throughput (token/s): 42.69, #queue-req: 0\n",
      "[2024-10-31 19:46:52] INFO:     127.0.0.1:40952 - \"POST /v1/chat/completions HTTP/1.1\" 200 OK\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>ChatCompletion(id='c563abb8fe74496f83203fe21ec4ff61', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='Here are 3 countries and their capitals:\\n\\n1. **Country:** Japan\\n**Capital:** Tokyo\\n\\n2. **Country:** Australia\\n**Capital:** Canberra\\n\\n3. **Country:** Brazil\\n**Capital:** Brasília', refusal=None, role='assistant', function_call=None, tool_calls=None), matched_stop=128009)], created=1730429212, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion', service_tier=None, system_fingerprint=None, usage=CompletionUsage(completion_tokens=46, prompt_tokens=49, total_tokens=95, prompt_tokens_details=None))</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import openai\n",
    "\n",
    "client = openai.Client(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"system\", \"content\": \"You are a helpful AI assistant\"},\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
    "print_highlight(response)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:46:52.898411Z",
     "iopub.status.busy": "2024-11-01T02:46:52.898149Z",
     "iopub.status.idle": "2024-11-01T02:46:54.398382Z",
     "shell.execute_reply": "2024-11-01T02:46:54.397564Z"
    }
   },
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}