vertical_slash_index.cu 16.2 KB
Newer Older
1
2
3
4
5
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT license.
// This file is for blocksparse attention utils cuda kernel.

#include <assert.h>
6
#include <c10/cuda/CUDAStream.h>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#include <cuda.h>
#include <torch/all.h>

// Save the start index of each block in the given range into block_offset.
// Returns the updated block count.
__device__ int64_t save_blocks(
    int* block_offset,
    int64_t range_start,
    int64_t range_end,
    int64_t block_size,
    int64_t input_block_count,
    int64_t kv_seqlen) {
  if (range_start >= kv_seqlen) {
    return input_block_count;
  }
  if (range_end > kv_seqlen) {
    range_end = kv_seqlen;
  }
  int64_t current_block_count = input_block_count;
  for (int idx = range_start; idx < range_end; idx += block_size) {
    block_offset[current_block_count++] = idx;
  }
  return current_block_count;
}

// CUDA kernel: convert sparse vertical/slash indices to block/column offsets.
__global__ void convert_vertical_slash_indexes_kernel(
    const int* q_seqlens,         // [BATCH, ]
    const int* kv_seqlens,        // [BATCH, ]
    const int* vertical_indexes,  // [BATCH, N_HEADS, NNZ_V]
    const int* slash_indexes,     // [BATCH, N_HEADS, NNZ_S]
    int* block_count,             // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
    int* block_offset,            // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S]
    int* column_count,            // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
    int* column_index,            // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V]
    int64_t N_HEADS,
    int64_t N_ROWS,
    int64_t BLOCK_SIZE_M,
    int64_t BLOCK_SIZE_N,
    int64_t NNZ_V,
    int64_t NNZ_S,
    bool causal  // True for intra, False for succ
) {
  const int batch_idx = blockIdx.y;
  const int head_idx = blockIdx.x;
  const int group_idx = blockIdx.z;

  int64_t q_seqlen = q_seqlens[batch_idx];
  int64_t kv_seqlen = kv_seqlens[batch_idx];
  int64_t block_idx_m = group_idx * blockDim.x + threadIdx.x;
  int64_t start_m = block_idx_m * BLOCK_SIZE_M;
  if (start_m >= q_seqlen) {
    return;
  }
  int64_t end_m = start_m + BLOCK_SIZE_M;
  vertical_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_V;
  slash_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_S;
  int64_t row_offset = (batch_idx * N_HEADS + head_idx) * N_ROWS + block_idx_m;
  block_count += row_offset;
  block_offset += row_offset * NNZ_S;
  column_count += row_offset;
  column_index += row_offset * NNZ_V;

  bool has_slash = true;
  int64_t tmp_col_cnt = 0, tmp_blk_cnt = 0;
  int64_t s = 0, v = 0;
  int64_t v_idx = vertical_indexes[v++];
  int64_t s_idx = slash_indexes[s++];
  if (causal) {
    while (s_idx >= end_m + (kv_seqlen - q_seqlen) && s < NNZ_S) {
      s_idx = slash_indexes[s++];
    }
    if (s_idx > end_m + (kv_seqlen - q_seqlen)) has_slash = false;
    s_idx = max((kv_seqlen - q_seqlen) + end_m - s_idx, BLOCK_SIZE_M);
  } else {
    while (s_idx >= end_m + kv_seqlen && s < NNZ_S) {
      s_idx = slash_indexes[s++];
    }
    if (s_idx > end_m + kv_seqlen) has_slash = false;
    s_idx = max(kv_seqlen + end_m - s_idx, BLOCK_SIZE_M);
  }

  int64_t range_start = s_idx - BLOCK_SIZE_M, range_end = s_idx;
  if (!has_slash) {
    if (causal) {
      range_start = (kv_seqlen - q_seqlen) + end_m;
      range_end = (kv_seqlen - q_seqlen) + end_m + BLOCK_SIZE_N;
    } else {
      range_start = kv_seqlen;
      range_end = kv_seqlen + BLOCK_SIZE_N;
    }
  }

  bool slash_finished = false;
  while (1) {
    if (v_idx < range_end) {
      if (v_idx < range_start) {
        column_index[tmp_col_cnt++] = v_idx;
      }
      if (v < NNZ_V) {
        v_idx = vertical_indexes[v++];
      } else {
        if (causal)
          v_idx = end_m + BLOCK_SIZE_N + (kv_seqlen - q_seqlen);
        else
          v_idx = end_m + BLOCK_SIZE_N + kv_seqlen;
      }
    } else {
      if ((s < NNZ_S && causal) || (s < NNZ_S && !causal && slash_indexes[s] >= start_m)) {
        if (causal)
          s_idx = max((kv_seqlen - q_seqlen) + end_m - slash_indexes[s++], BLOCK_SIZE_M);
        else
          s_idx = max(kv_seqlen + end_m - slash_indexes[s++], BLOCK_SIZE_M);
      } else {
        if (v == NNZ_V || (v_idx > range_start && causal)) {
          // add the last vertical if no more slash
          if (v == NNZ_V && !causal && v_idx < kv_seqlen) {
            column_index[tmp_col_cnt++] = v_idx;
          }
          tmp_blk_cnt = save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N, tmp_blk_cnt, kv_seqlen);
          break;
        } else {
          if (causal) {
            range_start = (kv_seqlen - q_seqlen) + end_m;
            range_end = (kv_seqlen - q_seqlen) + end_m + BLOCK_SIZE_N;
          } else {
            // if slash_finished but there are vertical left, save current
            // blocks
            tmp_blk_cnt = save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N, tmp_blk_cnt, kv_seqlen);
            range_start = kv_seqlen;
            range_end = kv_seqlen + BLOCK_SIZE_N;
          }
          slash_finished = true;
        }
      }
      if (!slash_finished) {
        if (s_idx > range_end + BLOCK_SIZE_M) {
          tmp_blk_cnt = save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N, tmp_blk_cnt, kv_seqlen);
          range_start = s_idx - BLOCK_SIZE_M;
          range_end = s_idx;
        } else if (s_idx > range_end) {
          range_end += BLOCK_SIZE_M;
        }
      }
    }
  }

  block_count[0] = tmp_blk_cnt;
  column_count[0] = tmp_col_cnt;
}

// Host function: launches the kernel with 64 threads per block.
void convert_vertical_slash_indexes_64x64(
    const int* q_seqlens,         // [BATCH, ]
    const int* kv_seqlens,        // [BATCH, ]
    const int* vertical_indexes,  // [BATCH, N_HEADS, NNZ_V]
    const int* slash_indexes,     // [BATCH, N_HEADS, NNZ_S]
    int* block_count,             // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
    int* block_offset,            // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S]
    int* column_count,            // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
    int* column_index,            // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V]
    int64_t BATCH_SIZE,
    int64_t N_HEADS,
    int64_t N_ROWS,
    int64_t BLOCK_SIZE_M,
    int64_t BLOCK_SIZE_N,
    int64_t NNZ_V,
    int64_t NNZ_S,
    bool causal) {
  const int N_THREADS = 64;
  const dim3 dimBlock((int32_t)N_THREADS);
  const dim3 dimGrid(
      (int32_t)N_HEADS, (int32_t)BATCH_SIZE, ((int32_t)N_ROWS + (int32_t)N_THREADS - 1) / (int32_t)N_THREADS);
180
181
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  convert_vertical_slash_indexes_kernel<<<dimGrid, dimBlock, 0, stream>>>(
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
      q_seqlens,
      kv_seqlens,
      vertical_indexes,
      slash_indexes,
      block_count,
      block_offset,
      column_count,
      column_index,
      N_HEADS,
      N_ROWS,
      BLOCK_SIZE_M,
      BLOCK_SIZE_N,
      NNZ_V,
      NNZ_S,
      causal);
}

// Host function: prepares tensor pointers and launches the CUDA kernel.
void convert_vertical_slash_indexes(
    torch::Tensor& block_count,      // [BATCH, N_HEADS, NUM_ROWS]
    torch::Tensor& block_offset,     // [BATCH, N_HEADS, NUM_ROWS, NNZ_S]
    torch::Tensor& column_count,     // [BATCH, N_HEADS, NUM_ROWS]
    torch::Tensor& column_index,     // [BATCH, N_HEADS, NUM_ROWS, NNZ_V]
    torch::Tensor q_seqlens,         // [BATCH, ]
    torch::Tensor kv_seqlens,        // [BATCH, ]
    torch::Tensor vertical_indexes,  // [BATCH, N_HEADS, NNZ_V]
    torch::Tensor slash_indexes,     // [BATCH, N_HEADS, NNZ_S]
    int64_t context_size,
    int64_t block_size_M,
    int64_t block_size_N,
    bool causal) {
  cudaSetDevice(q_seqlens.get_device());

  int64_t batch_size = slash_indexes.size(0);
  int64_t num_heads = slash_indexes.size(1);
  int64_t nnz_slash = slash_indexes.size(2);
  int64_t nnz_vertical = vertical_indexes.size(2);
  int64_t num_rows = (context_size + block_size_M - 1) / block_size_M;

  convert_vertical_slash_indexes_64x64(
      q_seqlens.data_ptr<int>(),
      kv_seqlens.data_ptr<int>(),
      vertical_indexes.data_ptr<int>(),
      slash_indexes.data_ptr<int>(),
      block_count.data_ptr<int>(),
      block_offset.data_ptr<int>(),
      column_count.data_ptr<int>(),
      column_index.data_ptr<int>(),
      batch_size,
      num_heads,
      num_rows,
      block_size_M,
      block_size_N,
      nnz_vertical,
      nnz_slash,
      causal);
}

// --- mergehead kernels --- //

// Kernel: like above, but supports per-head variable NNZ_V/NNZ_S.
__global__ void convert_vertical_slash_indexes_kernel_mergehead(
    const int* q_seqlens,         // [BATCH, ]
    const int* kv_seqlens,        // [BATCH, ]
    const int* vertical_indexes,  // [BATCH, N_HEADS, NNZ_V]
    const int* slash_indexes,     // [BATCH, N_HEADS, NNZ_S]
    const int* per_head_vertical_topkv,
    const int* per_head_slash_topkv,
    int* block_count,   // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
    int* block_offset,  // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S]
    int* column_count,  // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
    int* column_index,  // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V]
    int64_t N_HEADS,
    int64_t N_ROWS,
    int64_t BLOCK_SIZE_M,
    int64_t BLOCK_SIZE_N,
    int64_t NNZ_V,
    int64_t NNZ_S,
    bool causal  // True for intra, False for succ
) {
  const int batch_idx = blockIdx.y;
  const int head_idx = blockIdx.x;
  const int group_idx = blockIdx.z;

  int64_t q_seqlen = q_seqlens[batch_idx];
  int64_t kv_seqlen = kv_seqlens[batch_idx];
  int64_t block_idx_m = group_idx * blockDim.x + threadIdx.x;
  int64_t start_m = block_idx_m * BLOCK_SIZE_M;
  if (start_m >= q_seqlen) {
    return;
  }
  int64_t end_m = start_m + BLOCK_SIZE_M;
  vertical_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_V;
  slash_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_S;
  int64_t row_offset = (batch_idx * N_HEADS + head_idx) * N_ROWS + block_idx_m;
  block_count += row_offset;
  block_offset += row_offset * NNZ_S;
  column_count += row_offset;
  column_index += row_offset * NNZ_V;

  // MergeHead: each head has it's unique max topk NNZ_V,NNZ_S. (NNZ_V,NNZ_S
  // above is buffer size, use to compute offset)
  NNZ_S = per_head_slash_topkv[head_idx];
  NNZ_V = per_head_vertical_topkv[head_idx];

  bool has_slash = true;
  int64_t tmp_col_cnt = 0, tmp_blk_cnt = 0;
  int64_t s = 0, v = 0;
  int64_t v_idx = vertical_indexes[v++];
  int64_t s_idx = slash_indexes[s++];
  if (causal) {
    while (s_idx >= end_m + (kv_seqlen - q_seqlen) && s < NNZ_S) {
      s_idx = slash_indexes[s++];
    }
    if (s_idx > end_m + (kv_seqlen - q_seqlen)) has_slash = false;
    s_idx = max((kv_seqlen - q_seqlen) + end_m - s_idx, BLOCK_SIZE_M);
  } else {
    while (s_idx >= end_m + kv_seqlen && s < NNZ_S) {
      s_idx = slash_indexes[s++];
    }
    if (s_idx > end_m + kv_seqlen) has_slash = false;
    s_idx = max(kv_seqlen + end_m - s_idx, BLOCK_SIZE_M);
  }

  int64_t range_start = s_idx - BLOCK_SIZE_M, range_end = s_idx;
  if (!has_slash) {
    if (causal) {
      range_start = (kv_seqlen - q_seqlen) + end_m;
      range_end = (kv_seqlen - q_seqlen) + end_m + BLOCK_SIZE_N;
    } else {
      range_start = kv_seqlen;
      range_end = kv_seqlen + BLOCK_SIZE_N;
    }
  }

  bool slash_finished = false;
  while (1) {
    if (v_idx < range_end) {
      if (v_idx < range_start) {
        column_index[tmp_col_cnt++] = v_idx;
      }
      if (v < NNZ_V) {
        v_idx = vertical_indexes[v++];
      } else {
        if (causal)
          v_idx = end_m + BLOCK_SIZE_N + (kv_seqlen - q_seqlen);
        else
          v_idx = end_m + BLOCK_SIZE_N + kv_seqlen;
      }
    } else {
      if ((s < NNZ_S && causal) || (s < NNZ_S && !causal && slash_indexes[s] >= start_m)) {
        if (causal)
          s_idx = max((kv_seqlen - q_seqlen) + end_m - slash_indexes[s++], BLOCK_SIZE_M);
        else
          s_idx = max(kv_seqlen + end_m - slash_indexes[s++], BLOCK_SIZE_M);
      } else {
        if (v == NNZ_V || (v_idx > range_start && causal)) {
          // add the last vertical if no more slash
          if (v == NNZ_V && !causal && v_idx < kv_seqlen) {
            column_index[tmp_col_cnt++] = v_idx;
          }
          tmp_blk_cnt = save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N, tmp_blk_cnt, kv_seqlen);
          break;
        } else {
          if (causal) {
            range_start = (kv_seqlen - q_seqlen) + end_m;
            range_end = (kv_seqlen - q_seqlen) + end_m + BLOCK_SIZE_N;
          } else {
            // if slash_finished but there are vertical left, save current
            // blocks
            tmp_blk_cnt = save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N, tmp_blk_cnt, kv_seqlen);
            range_start = kv_seqlen;
            range_end = kv_seqlen + BLOCK_SIZE_N;
          }
          slash_finished = true;
        }
      }
      if (!slash_finished) {
        if (s_idx > range_end + BLOCK_SIZE_M) {
          tmp_blk_cnt = save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N, tmp_blk_cnt, kv_seqlen);
          range_start = s_idx - BLOCK_SIZE_M;
          range_end = s_idx;
        } else if (s_idx > range_end) {
          range_end += BLOCK_SIZE_M;
        }
      }
    }
  }

  block_count[0] = tmp_blk_cnt;
  column_count[0] = tmp_col_cnt;
}

// Launch the mergehead kernel with 64 threads per block.
void convert_vertical_slash_indexes_64x64_mergehead(
    const int* q_seqlens,         // [BATCH, ]
    const int* kv_seqlens,        // [BATCH, ]
    const int* vertical_indexes,  // [BATCH, N_HEADS, NNZ_V]
    const int* slash_indexes,     // [BATCH, N_HEADS, NNZ_S]
    int* per_head_vertical_topkv,
    int* per_head_slash_topkv,
    int* block_count,   // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
    int* block_offset,  // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S]
    int* column_count,  // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
    int* column_index,  // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V]
    int64_t BATCH_SIZE,
    int64_t N_HEADS,
    int64_t N_ROWS,
    int64_t BLOCK_SIZE_M,
    int64_t BLOCK_SIZE_N,
    int64_t NNZ_V,
    int64_t NNZ_S,
    bool causal) {
  const int N_THREADS = 64;
  const dim3 dimBlock(N_THREADS);
  const dim3 dimGrid(N_HEADS, BATCH_SIZE, (N_ROWS + N_THREADS - 1) / N_THREADS);
398
399
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  convert_vertical_slash_indexes_kernel_mergehead<<<dimGrid, dimBlock, 0, stream>>>(
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
      q_seqlens,
      kv_seqlens,
      vertical_indexes,
      slash_indexes,
      per_head_vertical_topkv,
      per_head_slash_topkv,
      block_count,
      block_offset,
      column_count,
      column_index,
      N_HEADS,
      N_ROWS,
      BLOCK_SIZE_M,
      BLOCK_SIZE_N,
      NNZ_V,
      NNZ_S,
      causal);
}

// Host wrapper for mergehead kernel.
void convert_vertical_slash_indexes_mergehead(
    torch::Tensor& block_count,            // [BATCH, N_HEADS, NUM_ROWS]
    torch::Tensor& block_offset,           // [BATCH, N_HEADS, NUM_ROWS, NNZ_S]
    torch::Tensor& column_count,           // [BATCH, N_HEADS, NUM_ROWS]
    torch::Tensor& column_index,           // [BATCH, N_HEADS, NUM_ROWS, NNZ_V]
    torch::Tensor q_seqlens,               // [BATCH, ]
    torch::Tensor kv_seqlens,              // [BATCH, ]
    torch::Tensor vertical_indexes,        // [BATCH, N_HEADS, NNZ_V]
    torch::Tensor slash_indexes,           // [BATCH, N_HEADS, NNZ_S]
    torch::Tensor vertical_indices_count,  // [N_HEADS, ]
    torch::Tensor slash_indices_count,
    int64_t context_size,
    int64_t block_size_M,
    int64_t block_size_N,
    bool causal) {
  cudaSetDevice(q_seqlens.get_device());

  int batch_size = slash_indexes.size(0);
  int num_heads = slash_indexes.size(1);
  int nnz_slash = slash_indexes.size(2);
  int nnz_vertical = vertical_indexes.size(2);
  int num_rows = (context_size + block_size_M - 1) / block_size_M;

  convert_vertical_slash_indexes_64x64_mergehead(
      q_seqlens.data_ptr<int>(),
      kv_seqlens.data_ptr<int>(),
      vertical_indexes.data_ptr<int>(),
      slash_indexes.data_ptr<int>(),
      vertical_indices_count.data_ptr<int>(),
      slash_indices_count.data_ptr<int>(),
      block_count.data_ptr<int>(),
      block_offset.data_ptr<int>(),
      column_count.data_ptr<int>(),
      column_index.data_ptr<int>(),
      batch_size,
      num_heads,
      num_rows,
      block_size_M,
      block_size_N,
      nnz_vertical,
      nnz_slash,
      causal);
}