moe_int8.cpp 35.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#include "common.h"
#include "gemm.h"
#include "vec.h"

namespace {

template <typename scalar_t>
inline void copy_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, int64_t size) {
  using Vec = at::vec::Vectorized<scalar_t>;
// no remainder
#pragma GCC unroll 4
  for (int64_t d = 0; d < size; d += Vec::size()) {
    Vec data = Vec::loadu(input + d);
    data.store(out + d);
  }
}

template <>
inline void copy_stub<uint8_t>(uint8_t* __restrict__ out, const uint8_t* __restrict__ input, int64_t size) {
  // size might be 64x + 32
  std::memcpy(out, input, size * sizeof(uint8_t));
}

template <typename scalar_t>
inline void copy_mul_stub(scalar_t* __restrict__ out, const float* __restrict__ input, float weight, int64_t size) {
  using bVec = at::vec::Vectorized<scalar_t>;
  using fVec = at::vec::Vectorized<float>;
  constexpr int kVecSize = bVec::size();
  const fVec weight_vec = fVec(weight);
  int64_t d;
#pragma GCC unroll 4
  for (d = 0; d <= size - kVecSize; d += kVecSize) {
    fVec data0 = fVec::loadu(input + d) * weight_vec;
    fVec data1 = fVec::loadu(input + d + fVec::size()) * weight_vec;
    bVec out_vec = convert_from_float_ext<scalar_t>(data0, data1);
    out_vec.store(out + d);
  }
  for (; d < size; ++d) {
    out[d] = static_cast<scalar_t>(input[d] * weight);
  }
}

// acc from [topk, K] to [K]
template <typename scalar_t>
inline void sum_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, int64_t topk, int64_t K) {
  using bVec = at::vec::Vectorized<scalar_t>;
  using fVec = at::vec::Vectorized<float>;
  constexpr int kVecSize = bVec::size();
  if (topk == 1) {
    // do copy for topk = 1
    copy_stub(out, input, K);
  } else {
    // do sum for topk != 1
    int64_t d;
#pragma GCC unroll 4
    for (d = 0; d <= K - kVecSize; d += kVecSize) {
      fVec sum_fvec0 = fVec(0.f);
      fVec sum_fvec1 = fVec(0.f);
      for (int t = 0; t < topk; ++t) {
        bVec x_bvec = bVec::loadu(input + t * K + d);
        fVec x_fvec0, x_fvec1;
        std::tie(x_fvec0, x_fvec1) = at::vec::convert_to_float(x_bvec);

        sum_fvec0 += x_fvec0;
        sum_fvec1 += x_fvec1;
      }
      bVec out_bvec = convert_from_float_ext<scalar_t>(sum_fvec0, sum_fvec1);
      out_bvec.store(out + d);
    }
    for (; d < K; ++d) {
      float sum_val = 0.f;
      for (int t = 0; t < topk; ++t) {
        sum_val += static_cast<float>(input[t * K + d]);
      }
      out[d] = static_cast<scalar_t>(sum_val);
    }
  }
}

// out = input + input2 * scale
template <typename scalar_t>
inline void add_mul_stub(
    scalar_t* __restrict__ out,
    const float* __restrict__ input,
    const scalar_t* __restrict__ input2,
    float scale,
    int64_t size) {
  using bVec = at::vec::Vectorized<scalar_t>;
  using fVec = at::vec::Vectorized<float>;
  constexpr int kVecSize = bVec::size();
  const fVec s_vec = fVec(scale);
  int64_t d;
#pragma GCC unroll 4
  for (d = 0; d <= size - kVecSize; d += kVecSize) {
    fVec x0 = fVec::loadu(input + d);
    fVec x1 = fVec::loadu(input + d + fVec::size());

    bVec y_bvec = bVec::loadu(input2 + d);
    fVec y0, y1;
    std::tie(y0, y1) = at::vec::convert_to_float(y_bvec);

    x0 = x0 + y0 * s_vec;
    x1 = x1 + y1 * s_vec;
    bVec out_vec = convert_from_float_ext<scalar_t>(x0, x1);
    out_vec.store(out + d);
  }
  for (; d < size; ++d) {
    out[d] = static_cast<scalar_t>(input[d] + float(input2[d]) * scale);
  }
}

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
template <typename scalar_t, int BLOCK_N>
inline void silu_and_mul(
    scalar_t* __restrict__ C,
    const int32_t* __restrict__ C0,  // x: x0, x1
    const int32_t* __restrict__ C1,  // y: y0, y1
    const float* __restrict__ As,
    const float* __restrict__ Bs0,
    const float* __restrict__ Bs1,
    const int32_t* __restrict__ Bcomp0,
    const int32_t* __restrict__ Bcomp1,
    int64_t m_size,
    int64_t N) {
#if defined(CPU_CAPABILITY_AVX512)
  constexpr int COLS = BLOCK_N / 16;
  static_assert(COLS % 2 == 0);

  __m512 vc0[COLS];
  __m512 vc1[COLS];
  __m512i vcomp0[COLS];
  __m512i vcomp1[COLS];
  __m512 vas;
  __m512 vbs0[COLS];
  __m512 vbs1[COLS];

  auto load_scale_and_comp = [&](auto col) {
    vcomp0[col] = _mm512_loadu_si512(Bcomp0 + col * 16);
    vcomp1[col] = _mm512_loadu_si512(Bcomp1 + col * 16);
    vbs0[col] = _mm512_loadu_ps(Bs0 + col * 16);
    vbs1[col] = _mm512_loadu_ps(Bs1 + col * 16);
  };
  Unroll<COLS>{}(load_scale_and_comp);

  auto scalec = [&](auto col, int64_t m) {
    // update As
    vas = _mm512_set1_ps(As[m]);
    // C = As * (C - Bcomp) * Bs
    __m512i vc32_0 = _mm512_loadu_si512(C0 + m * BLOCK_N + col * 16);
    __m512i vc32_1 = _mm512_loadu_si512(C1 + m * BLOCK_N + col * 16);
    vc0[col] = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc32_0, vcomp0[col]));
    vc1[col] = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc32_1, vcomp1[col]));
    vc0[col] = _mm512_mul_ps(_mm512_mul_ps(vc0[col], vas), vbs0[col]);
    vc1[col] = _mm512_mul_ps(_mm512_mul_ps(vc1[col], vas), vbs1[col]);
  };

  using bVec = at::vec::Vectorized<scalar_t>;
  using fVec = at::vec::Vectorized<float>;
  const fVec one = fVec(1.f);
  auto silu_and_mul = [&](auto col) {
    fVec x = fVec(vc0[col]);
    fVec y = fVec(vc1[col]);
    x = x / (one + x.neg().exp_u20());
    vc0[col] = x * y;
  };

  auto storec = [&](auto col, int64_t m) {
    if constexpr (col % 2 == 0) {
      fVec x0 = fVec(vc0[col + 0]);
      fVec x1 = fVec(vc0[col + 1]);
      bVec out_vec = convert_from_float_ext<scalar_t>(x0, x1);
      out_vec.store(C + m * N + col * 16);
    }
  };

  for (int64_t m = 0; m < m_size; ++m) {
    Unroll<COLS>{}(scalec, m);
    Unroll<COLS>{}(silu_and_mul);
    Unroll<COLS>{}(storec, m);
  }
#else
  TORCH_CHECK(false, "silu_and_mul: scalar path not implemented!");
#endif
}

template <int BLOCK_N>
inline void scale_C(
    float* __restrict__ C,
    const int32_t* __restrict__ Ctmp,
    const float* __restrict__ As,
    const float* __restrict__ Bs,
    const int32_t* __restrict__ Bcomp,
    int64_t m_size) {
#if defined(CPU_CAPABILITY_AVX512)
  constexpr int COLS = BLOCK_N / 16;
  static_assert(COLS % 2 == 0);

  __m512 vc[COLS];
  __m512i vcomp[COLS];
  __m512 vas;
  __m512 vbs[COLS];

  auto load_scale_and_comp = [&](auto col) {
    vcomp[col] = _mm512_loadu_si512(Bcomp + col * 16);
    vbs[col] = _mm512_loadu_ps(Bs + col * 16);
  };
  Unroll<COLS>{}(load_scale_and_comp);

  auto scalec = [&](auto col, int64_t m) {
    // update As
    vas = _mm512_set1_ps(As[m]);
    // C = As * (C - Bcomp) * Bs
    __m512i vc32 = _mm512_loadu_si512(Ctmp + m * BLOCK_N + col * 16);
    vc[col] = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc32, vcomp[col]));
    vc[col] = _mm512_mul_ps(_mm512_mul_ps(vc[col], vas), vbs[col]);
    _mm512_storeu_ps(C + m * BLOCK_N + col * 16, vc[col]);
  };

  for (int64_t m = 0; m < m_size; ++m) {
    Unroll<COLS>{}(scalec, m);
  }
#else
  TORCH_CHECK(false, "scale_C: scalar path not implemented!");
#endif
}

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/// gemm for w13
template <typename scalar_t, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_vnni {
  static inline void apply(
      const uint8_t* __restrict__ A,
      const int8_t* __restrict__ B0,
      const int8_t* __restrict__ B1,
      scalar_t* __restrict__ C,
      const float* __restrict__ As,
      const float* __restrict__ Bs0,
      const float* __restrict__ Bs1,
      const int32_t* __restrict__ Bcomp0,
      const int32_t* __restrict__ Bcomp1,
      int64_t K,
      int64_t lda,
      int64_t ldb,
      int64_t ldc) {
    TORCH_CHECK(false, "tinygemm_kernel_nn: scalar path not implemented!");
  }
};

#if defined(CPU_CAPABILITY_AVX512)
template <int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_vnni<at::BFloat16, BLOCK_M, BLOCK_N> {
  static inline void apply(
      const uint8_t* __restrict__ A,
      const int8_t* __restrict__ B0,
      const int8_t* __restrict__ B1,
      at::BFloat16* __restrict__ C,
      const float* __restrict__ As,
      const float* __restrict__ Bs0,
      const float* __restrict__ Bs1,
      const int32_t* __restrict__ Bcomp0,
      const int32_t* __restrict__ Bcomp1,
      int64_t K,
      int64_t lda,
      int64_t ldb,
      int64_t ldc) {
    constexpr int ROWS = BLOCK_M;
    constexpr int COLS = BLOCK_N / 16;
    static_assert(COLS % 2 == 0);

    __m512i va;
    __m512i vb0[COLS];
    __m512i vb1[COLS];
    __m512i vc0[ROWS * COLS];
    __m512i vc1[ROWS * COLS];
    __m512i vcomp0[COLS];
    __m512i vcomp1[COLS];
    __m512 vas;
    __m512 vbs0[COLS];
    __m512 vbs1[COLS];

    auto loadc = [&](auto i) {
      vc0[i] = _mm512_set1_epi32(0);
      vc1[i] = _mm512_set1_epi32(0);
    };
    Unroll<ROWS * COLS>{}(loadc);

    const int64_t K4 = K >> 2;
    const int64_t lda4 = lda >> 2;
    const int64_t ldb4 = ldb;  // ldb * 4 >> 2;
    const int32_t* a_ptr = reinterpret_cast<const int32_t*>(A);
    const int32_t* b0_ptr = reinterpret_cast<const int32_t*>(B0);
    const int32_t* b1_ptr = reinterpret_cast<const int32_t*>(B1);

    auto compute = [&](auto i, int64_t k) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;

      if constexpr (col == 0) {
        va = _mm512_set1_epi32(a_ptr[row * lda4 + k]);
      }
      if constexpr (row == 0) {
        vb0[col] = _mm512_loadu_si512(b0_ptr + k * ldb4 + col * 16);
        vb1[col] = _mm512_loadu_si512(b1_ptr + k * ldb4 + col * 16);
      }
      vc0[i] = _mm512_dpbusd_epi32(vc0[i], va, vb0[col]);
      vc1[i] = _mm512_dpbusd_epi32(vc1[i], va, vb1[col]);
    };
    for (int64_t k = 0; k < K4; ++k) {
      Unroll<ROWS * COLS>{}(compute, k);
    }

    auto scalec = [&](auto i) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;

      // load a scale
      if constexpr (col == 0) {
        vas = _mm512_set1_ps(As[row]);
      }
      // load b scale and vcomp
      if constexpr (row == 0) {
        vbs0[col] = _mm512_loadu_ps(Bs0 + col * 16);
        vbs1[col] = _mm512_loadu_ps(Bs1 + col * 16);
        vcomp0[col] = _mm512_loadu_si512(Bcomp0 + col * 16);
        vcomp1[col] = _mm512_loadu_si512(Bcomp1 + col * 16);
      }
      __m512 c0 = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc0[i], vcomp0[col]));
      __m512 c1 = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc1[i], vcomp1[col]));
      vc0[i] = _mm512_castps_si512(_mm512_mul_ps(_mm512_mul_ps(c0, vas), vbs0[col]));
      vc1[i] = _mm512_castps_si512(_mm512_mul_ps(_mm512_mul_ps(c1, vas), vbs1[col]));
    };
    Unroll<ROWS * COLS>{}(scalec);

    using Vec = at::vec::Vectorized<float>;
    const Vec one = Vec(1.f);
    auto storec = [&](auto i) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;
      // for COLS = 2, 4 use 512bit store
      if constexpr (col % 2 == 0) {
        Vec x0 = _mm512_castsi512_ps(vc0[row * COLS + col + 0]);
        Vec x1 = _mm512_castsi512_ps(vc0[row * COLS + col + 1]);
        Vec y0 = _mm512_castsi512_ps(vc1[row * COLS + col + 0]);
        Vec y1 = _mm512_castsi512_ps(vc1[row * COLS + col + 1]);
        // silu
        x0 = x0 / (one + x0.neg().exp_u20());
        x1 = x1 / (one + x1.neg().exp_u20());
        // mul
        x0 = x0 * y0;
        x1 = x1 * y1;

        _mm512_storeu_si512(
            reinterpret_cast<__m512i*>((C + row * ldc + col * 16)),
            (__m512i)(_mm512_cvtne2ps_pbh(__m512(x1), __m512(x0))));
      }
    };
    Unroll<ROWS * COLS>{}(storec);
  }
};
#endif

#define LAUNCH_TINYGEMM_KERNEL_VNNI(MB_SIZE, NB_SIZE)      \
  tinygemm_kernel_vnni<scalar_t, MB_SIZE, NB_SIZE>::apply( \
      A + mb_start * lda,                                  \
      B0 + nb_start * 4,                                   \
      B1 + nb_start * 4,                                   \
      C + mb_start * ldc + nb_start,                       \
      As + mb_start,                                       \
      Bs0 + nb_start,                                      \
      Bs1 + nb_start,                                      \
      Bcomp0 + nb_start,                                   \
      Bcomp1 + nb_start,                                   \
      K,                                                   \
      lda,                                                 \
      ldb,                                                 \
      ldc);

template <typename scalar_t>
void tinygemm_kernel(
    const uint8_t* __restrict__ A,
    const int8_t* __restrict__ B0,
    const int8_t* __restrict__ B1,
    scalar_t* __restrict__ C,
    const float* __restrict__ As,
    const float* __restrict__ Bs0,
    const float* __restrict__ Bs1,
    int64_t M,
    int64_t N,
    int64_t K,
    int64_t lda,
    int64_t ldb,
    int64_t ldc) {
  const int32_t* Bcomp0 = reinterpret_cast<const int32_t*>(B0 + block_size_n() * K);
  const int32_t* Bcomp1 = reinterpret_cast<const int32_t*>(B1 + block_size_n() * K);

  // pattern: 1-(2+2)-(8+8)
  constexpr int64_t BLOCK_M = 4;
  constexpr int64_t BLOCK_N = 32;
  const int64_t MB = div_up(M, BLOCK_M);
  const int64_t NB = div_up(N, BLOCK_N);
  for (int mb = 0; mb < MB; ++mb) {
    int64_t mb_start = mb * BLOCK_M;
    int64_t mb_size = std::min(BLOCK_M, M - mb_start);
    for (int64_t nb = 0; nb < NB; ++nb) {
      int64_t nb_start = nb * BLOCK_N;
      int64_t nb_size = std::min(BLOCK_N, N - nb_start);

      switch (mb_size << 4 | nb_size >> 4) {
        case 0x12:
          LAUNCH_TINYGEMM_KERNEL_VNNI(1, 32);
          break;
        case 0x22:
          LAUNCH_TINYGEMM_KERNEL_VNNI(2, 32);
          break;
        case 0x32:
          LAUNCH_TINYGEMM_KERNEL_VNNI(3, 32);
          break;
        case 0x42:
          LAUNCH_TINYGEMM_KERNEL_VNNI(4, 32);
          break;
        default:
          TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
      }
    }
  }
}

/// gemm for w2
template <typename scalar_t, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_vnni2 {
  static inline void apply(
      const uint8_t* __restrict__ A,
      const int8_t* __restrict__ B,
      float* __restrict__ C,
      const float* __restrict__ As,
      const float* __restrict__ Bs,
      const int32_t* __restrict__ Bcomp,
      int64_t K,
      int64_t lda,
      int64_t ldb,
      int64_t ldc) {
    TORCH_CHECK(false, "tinygemm_kernel_nn: scalar path not implemented!");
  }
};

#if defined(CPU_CAPABILITY_AVX512)
template <int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_vnni2<at::BFloat16, BLOCK_M, BLOCK_N> {
  static inline void apply(
      const uint8_t* __restrict__ A,
      const int8_t* __restrict__ B,
      float* __restrict__ C,
      const float* __restrict__ As,
      const float* __restrict__ Bs,
      const int32_t* __restrict__ Bcomp,
      int64_t K,
      int64_t lda,
      int64_t ldb,
      int64_t ldc) {
    constexpr int ROWS = BLOCK_M;
    constexpr int COLS = BLOCK_N / 16;
    static_assert(COLS % 2 == 0);

    __m512i va;
    __m512i vb[COLS];
    __m512i vc[ROWS * COLS];
    __m512i vcomp[COLS];
    __m512 vas;
    __m512 vbs[COLS];

    auto loadc = [&](auto i) { vc[i] = _mm512_set1_epi32(0); };
    Unroll<ROWS * COLS>{}(loadc);

    const int64_t K4 = K >> 2;
    const int64_t lda4 = lda >> 2;
    const int64_t ldb4 = ldb;  // ldb * 4 >> 2;
    const int32_t* a_ptr = reinterpret_cast<const int32_t*>(A);
    const int32_t* b_ptr = reinterpret_cast<const int32_t*>(B);

    auto compute = [&](auto i, int64_t k) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;

      if constexpr (col == 0) {
        va = _mm512_set1_epi32(a_ptr[row * lda4 + k]);
      }
      if constexpr (row == 0) {
        vb[col] = _mm512_loadu_si512(b_ptr + k * ldb4 + col * 16);
      }
      vc[i] = _mm512_dpbusd_epi32(vc[i], va, vb[col]);
    };
    for (int64_t k = 0; k < K4; ++k) {
      Unroll<ROWS * COLS>{}(compute, k);
    }

    auto storec = [&](auto i) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;

      // load a scale
      if constexpr (col == 0) {
        vas = _mm512_set1_ps(As[row]);
      }
      // load b scale and vcomp per 2 vectors
      // also load bias if any
      if constexpr (row == 0) {
        if constexpr (col % 2 == 0) {
          vbs[col + 0] = _mm512_loadu_ps(Bs + col * 16);
          vbs[col + 1] = _mm512_loadu_ps(Bs + col * 16 + 16);
          vcomp[col + 0] = _mm512_loadu_si512(Bcomp + col * 16);
          vcomp[col + 1] = _mm512_loadu_si512(Bcomp + col * 16 + 16);
        }
      }
      __m512 x = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc[i], vcomp[col]));
      x = _mm512_mul_ps(_mm512_mul_ps(x, vas), vbs[col]);
      _mm512_storeu_ps(reinterpret_cast<__m512*>(C + row * ldc + col * 16), x);
    };
    Unroll<ROWS * COLS>{}(storec);
  }
};
#endif

#define LAUNCH_TINYGEMM_KERNEL_VNNI2(MB_SIZE, NB_SIZE)      \
  tinygemm_kernel_vnni2<scalar_t, MB_SIZE, NB_SIZE>::apply( \
      A + mb_start * lda,                                   \
      B + nb_start * 4,                                     \
      C + mb_start * ldc + nb_start,                        \
      As + mb_start,                                        \
      Bs + nb_start,                                        \
      Bcomp + nb_start,                                     \
      K,                                                    \
      lda,                                                  \
      ldb,                                                  \
      ldc);

template <typename scalar_t>
void tinygemm_kernel(
    const uint8_t* __restrict__ A,
    const int8_t* __restrict__ B,
    float* __restrict__ C,
    const float* __restrict__ As,
    const float* __restrict__ Bs,
    int64_t M,
    int64_t N,
    int64_t K,
    int64_t lda,
    int64_t ldb,
    int64_t ldc) {
  // B compensation
  const int32_t* Bcomp = reinterpret_cast<const int32_t*>(B + block_size_n() * K);

  // pattern: 1-4-16
  constexpr int64_t BLOCK_M = 4;
  constexpr int64_t BLOCK_N = 64;
  const int64_t MB = div_up(M, BLOCK_M);
  const int64_t NB = div_up(N, BLOCK_N);
  for (int64_t mb = 0; mb < MB; ++mb) {
    int64_t mb_start = mb * BLOCK_M;
    int64_t mb_size = std::min(BLOCK_M, M - mb_start);
    for (int64_t nb = 0; nb < NB; ++nb) {
      int64_t nb_start = nb * BLOCK_N;
      int64_t nb_size = std::min(BLOCK_N, N - nb_start);

      switch (mb_size << 4 | nb_size >> 4) {
        case 0x12:
          LAUNCH_TINYGEMM_KERNEL_VNNI2(1, 32);
          break;
        case 0x22:
          LAUNCH_TINYGEMM_KERNEL_VNNI2(2, 32);
          break;
        case 0x32:
          LAUNCH_TINYGEMM_KERNEL_VNNI2(3, 32);
          break;
        case 0x42:
          LAUNCH_TINYGEMM_KERNEL_VNNI2(4, 32);
          break;
        default:
          TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
      }
    }
  }
}

}  // anonymous namespace

template <typename scalar_t>
void fused_experts_int8_kernel_impl(
    scalar_t* __restrict__ output,
    scalar_t* __restrict__ ic1,
    scalar_t* __restrict__ ic2,
    uint8_t* __restrict__ A_tmp,
    float* __restrict__ C_tmp,
    uint8_t* __restrict__ Aq_tmp,
    float* __restrict__ As_tmp,
    const scalar_t* __restrict__ input,
    const int8_t* __restrict__ packed_w1,
    const int8_t* __restrict__ packed_w2,
    const float* __restrict__ w1s,
    const float* __restrict__ w2s,
    const float* __restrict__ topk_weights,
    const int32_t* __restrict__ sorted_ids,
    const int32_t* __restrict__ expert_ids,
    const int32_t* __restrict__ offsets,
    int64_t M,
    int64_t N,
    int64_t K,
    int64_t E,
    int64_t topk,
    int64_t num_tokens_post_pad) {
  // handle 2 tiles per block
  constexpr int64_t BLOCK_M = block_size_m();
  constexpr int64_t BLOCK_N = block_size_n();

  // stage 0: quantize input to uint8, [M, K]
  at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
    for (int64_t m = begin; m < end; ++m) {
      quantize_row_int8<scalar_t>(Aq_tmp + m * K, As_tmp[m], input + m * K, K);
    }
  });

  // stage 1: intermediate_cache1 = silu(hidden_states @ w1)
  const int64_t MB = div_up(num_tokens_post_pad, BLOCK_M);
  const int64_t NB = div_up(N, BLOCK_N);

  // strides for w1: [E, 2N, K]
  TORCH_CHECK(N % BLOCK_N == 0, "Fixme when N is not multiples of ", BLOCK_N);

  // K and N are packed for int8
  const int64_t packed_K = get_row_size<int8_t>(K);
  const int64_t packed_N = get_row_size<int8_t>(N);

  const int64_t stride_e = 2 * N * packed_K;
  const int64_t stride_n = packed_K;
632
633
634
635

  int64_t avg_M = std::max(int64_t(1), M * topk / E);
  const bool use_brgemm = can_use_brgemm<int8_t>(avg_M);

636
  // here we only parallel on half of 2N to fuse silu_and_mul with gemm
637
  parallel_2d(MB, NB, [&](int64_t mb0, int64_t mb1, int64_t nb0, int64_t nb1) {
638
    // get local pointers
639
    int tid = get_thread_num();
640
    uint8_t* __restrict__ A = A_tmp + tid * BLOCK_M * K;
641
642
    int32_t* __restrict__ C0 = reinterpret_cast<int32_t*>(C_tmp) + tid * 2 * BLOCK_M * BLOCK_N;
    int32_t* __restrict__ C1 = C0 + BLOCK_M * BLOCK_N;
643
644
645

    alignas(64) float As[BLOCK_M];

646
647
648
649
    loop_2d<int8_t>(mb0, mb1, nb0, nb1, BLOCK_N * K * 2, [&](int64_t mb, int64_t nb, int64_t nb_offset) {
      // nb_upper from top half and nb_lower from bottom half
      int64_t nb_upper = nb, nb_lower = nb + NB;
      int64_t n_size = std::min(N - nb * BLOCK_N, BLOCK_N);
650
651
652

      // B shape [K, n_size] in vnni format
      int32_t expert_id = expert_ids[mb];
653
654
655
656
      const int8_t* __restrict__ B0 = packed_w1 + expert_id * stride_e + nb_upper * BLOCK_N * stride_n;
      const int8_t* __restrict__ B1 = packed_w1 + expert_id * stride_e + nb_lower * BLOCK_N * stride_n;
      const float* __restrict__ Bs0 = w1s + expert_id * 2 * N + nb_upper * BLOCK_N;
      const float* __restrict__ Bs1 = w1s + expert_id * 2 * N + nb_lower * BLOCK_N;
657
658
659
660
661
662
663
664
665
666
667

      // 1.a load A
      const int32_t* A_ids = sorted_ids + mb * BLOCK_M;
      int64_t m_size = offsets[mb + 1] - offsets[mb];

      for (int64_t m = 0; m < m_size; ++m) {
        int32_t index = A_ids[m] / topk;
        copy_stub(A + m * K, Aq_tmp + index * K, K);
        As[m] = As_tmp[index];
      }

668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
      if (use_brgemm) {
        // 1.b gemm: C0 = A @ B0
        at::native::cpublas::brgemm(
            /* M     */ m_size,
            /* N     */ n_size,
            /* K     */ K,
            /* lda   */ K,
            /* ldb   */ n_size,
            /* ldc   */ BLOCK_N,
            /* add_C */ false,
            /* A     */ A,
            /* B     */ B0,
            /* C     */ C0);

        // 1.c gemm: C1 = A @ B1
        at::native::cpublas::brgemm(
            /* M     */ m_size,
            /* N     */ n_size,
            /* K     */ K,
            /* lda   */ K,
            /* ldb   */ n_size,
            /* ldc   */ BLOCK_N,
            /* add_C */ false,
            /* A     */ A,
            /* B     */ B1,
            /* C     */ C1);

        const int32_t* Bcomp0 = reinterpret_cast<const int32_t*>(B0 + block_size_n() * K);
        const int32_t* Bcomp1 = reinterpret_cast<const int32_t*>(B1 + block_size_n() * K);

        // 1.d silu and mul
        const int64_t offset = offsets[mb];
        silu_and_mul<scalar_t, BLOCK_N>(
            ic1 + offset * N + nb * BLOCK_N, C0, C1, As, Bs0, Bs1, Bcomp0, Bcomp1, m_size, N);
      } else {
        // fused 1.bcd: silu_and_mul(A @ B0, A @ B1)
        const int64_t offset = offsets[mb];
        tinygemm_kernel(
            /* A     */ A,
            /* B0    */ B0,
            /* B1    */ B1,
            /* C     */ ic1 + offset * N + nb * BLOCK_N,
            /* As    */ As,
            /* Bs0   */ Bs0,
            /* Bs1   */ Bs1,
            /* M     */ m_size,
            /* N     */ n_size,
            /* K     */ K,
            /* lda   */ K,
            /* ldb   */ n_size,
            /* ldc   */ N);
      }
    });

    if (use_brgemm) {
      at::native::cpublas::brgemm_release();
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
    }
  });

  // stage 1.5: quantize ic1 to uint8, [M * topk, N]
  at::parallel_for(0, M * topk, 0, [&](int64_t begin, int64_t end) {
    for (int64_t m = begin; m < end; ++m) {
      quantize_row_int8<scalar_t>(Aq_tmp + m * N, As_tmp[m], ic1 + m * N, N);
    }
  });

  // stage 2: intermediate_cache2 = intermediate_cache1 @ w2
  //   w2 : [E, K, N] as [E, OC, IC]
  const int64_t OC = K;  // rename K as OC
  const int64_t IC = N;  // rename N as IC
  const int64_t MB2 = MB;
  const int64_t NB2 = div_up(OC, BLOCK_N);
  const int64_t stride_e2 = OC * packed_N;
  const int64_t stride_oc = packed_N;

  // parallel on [MB2, NB2]
744
  parallel_2d(MB2, NB2, [&](int64_t mb0, int64_t mb1, int64_t nb0, int64_t nb1) {
745
    // get local pointers
746
    int tid = get_thread_num();
747
    float* __restrict__ C = C_tmp + tid * 2 * BLOCK_M * BLOCK_N;
748
    int32_t* __restrict__ C32 = reinterpret_cast<int32_t*>(C + BLOCK_M * BLOCK_N);
749

750
    loop_2d<int8_t>(mb0, mb1, nb0, nb1, BLOCK_N * IC, [&](int64_t mb, int64_t nb, int64_t nb_offset) {
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
      int64_t m_size = offsets[mb + 1] - offsets[mb];
      int64_t n_size = std::min(OC - nb * BLOCK_N, BLOCK_N);

      // A ptr from ic1 of [M * topk, N] in sorted order
      // so as to avoid copy A to tmp buffer again
      const uint8_t* __restrict__ A = Aq_tmp + offsets[mb] * N;
      const float* __restrict__ As = As_tmp + offsets[mb];
      const int32_t* A_ids = sorted_ids + mb * BLOCK_M;

      // B shape [IC, n_size] in vnni format
      int32_t expert_id = expert_ids[mb];
      const int8_t* __restrict__ B = packed_w2 + expert_id * stride_e2 + nb * BLOCK_N * stride_oc;
      const float* __restrict__ Bs = w2s + expert_id * K + nb * BLOCK_N;

      // 2.a gemm: C = A @ B
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
      if (use_brgemm) {
        at::native::cpublas::brgemm(
            /* M     */ m_size,
            /* N     */ n_size,
            /* K     */ IC,
            /* lda   */ IC,
            /* ldb   */ n_size,
            /* ldc   */ BLOCK_N,
            /* add_C */ false,
            /* A     */ A,
            /* B     */ B,
            /* C     */ C32);

        // apply scales
        const int32_t* Bcomp = reinterpret_cast<const int32_t*>(B + block_size_n() * IC);
        scale_C<BLOCK_N>(C, C32, As, Bs, Bcomp, m_size);
      } else {
        tinygemm_kernel<scalar_t>(
            /* A     */ A,
            /* B     */ B,
            /* C     */ C,
            /* As    */ As,
            /* Bs    */ Bs,
            /* M     */ m_size,
            /* N     */ n_size,
            /* K     */ IC,
            /* lda   */ IC,
            /* ldb   */ n_size,
            /* ldc   */ BLOCK_N);
      }
796
797
798
799
800
801
802
803

      // 2.b copy from C to ic2 in original order
      //   and also mul topk_weights in float32
      for (int64_t m = 0; m < m_size; ++m) {
        int32_t index = A_ids[m];
        float weight = topk_weights[index];
        copy_mul_stub(ic2 + index * K + nb * BLOCK_N, C + m * BLOCK_N, weight, n_size);
      }
804
805
806
807
    });

    if (use_brgemm) {
      at::native::cpublas::brgemm_release();
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
    }
  });

  // stage 3: out = intermediate_cache2.sum(dim=1)
  //   from [M, topk, K] to [M, K]
  at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
    for (int64_t m = begin; m < end; ++m) {
      sum_stub(output + m * K, ic2 + m * topk * K, topk, K);
    }
  });
}

#define INSTANTIATE_MOE_INT8_TEMPLATE(TYPE)           \
  template void fused_experts_int8_kernel_impl<TYPE>( \
      TYPE* __restrict__ output,                      \
      TYPE* __restrict__ ic1,                         \
      TYPE* __restrict__ ic2,                         \
      uint8_t* __restrict__ A_tmp,                    \
      float* __restrict__ C_tmp,                      \
      uint8_t* __restrict__ Aq_tmp,                   \
      float* __restrict__ As_tmp,                     \
      const TYPE* __restrict__ input,                 \
      const int8_t* __restrict__ packed_w1,           \
      const int8_t* __restrict__ packed_w2,           \
      const float* __restrict__ w1s,                  \
      const float* __restrict__ w2s,                  \
      const float* __restrict__ topk_weights,         \
      const int32_t* __restrict__ sorted_ids,         \
      const int32_t* __restrict__ expert_ids,         \
      const int32_t* __restrict__ offsets,            \
      int64_t M,                                      \
      int64_t N,                                      \
      int64_t K,                                      \
      int64_t E,                                      \
      int64_t topk,                                   \
      int64_t num_tokens_post_pad)

INSTANTIATE_MOE_INT8_TEMPLATE(at::BFloat16);
INSTANTIATE_MOE_INT8_TEMPLATE(at::Half);

template <typename scalar_t>
void shared_expert_int8_kernel_impl(
    scalar_t* __restrict__ output,
    scalar_t* __restrict__ ic1,
    float* __restrict__ C_tmp,
    uint8_t* __restrict__ Aq_tmp,
    float* __restrict__ As_tmp,
    const scalar_t* __restrict__ input,
    const int8_t* __restrict__ packed_w1,
    const int8_t* __restrict__ packed_w2,
    const float* __restrict__ w1s,
    const float* __restrict__ w2s,
    const scalar_t* __restrict__ fused_experts_out,
    float routed_scaling_factor,
    int64_t M,
    int64_t N,
    int64_t K) {
  // handle 2 tiles per block
  constexpr int64_t BLOCK_M = block_size_m();
  constexpr int64_t BLOCK_N = block_size_n();

  // stage 0: quantize input to uint8, [M, K]
  at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
    for (int64_t m = begin; m < end; ++m) {
      quantize_row_int8<scalar_t>(Aq_tmp + m * K, As_tmp[m], input + m * K, K);
    }
  });

  // stage 1: intermediate_cache1 = silu(hidden_states @ w1)
  const int64_t MB = div_up(M, BLOCK_M);
  const int64_t NB = div_up(N, BLOCK_N);

  TORCH_CHECK(N % BLOCK_N == 0, "Fixme when N is not multiples of ", BLOCK_N);

  // K and N are packed for int8
  const int64_t packed_K = get_row_size<int8_t>(K);
  const int64_t packed_N = get_row_size<int8_t>(N);
  const int64_t stride_n = packed_K;

887
888
  const bool use_brgemm = can_use_brgemm<int8_t>(M);

889
  // here we only parallel on half of 2N to fuse silu_and_mul with gemm
890
891
892
893
894
895
896
897
898
899
  parallel_2d(MB, NB, [&](int64_t mb0, int64_t mb1, int64_t nb0, int64_t nb1) {
    // get local pointers
    int tid = get_thread_num();
    int32_t* __restrict__ C0 = reinterpret_cast<int32_t*>(C_tmp) + tid * 2 * BLOCK_M * BLOCK_N;
    int32_t* __restrict__ C1 = C0 + BLOCK_M * BLOCK_N;

    loop_2d<int8_t>(mb0, mb1, nb0, nb1, BLOCK_N * K * 2, [&](int64_t mb, int64_t nb, int64_t nb_offset) {
      // nb_upper from top half and nb_lower from bottom half
      int64_t nb_upper = nb, nb_lower = nb + NB;
      int64_t n_size = std::min(N - nb * BLOCK_N, BLOCK_N);
900
901
902
903
904
905
906
      int64_t m_size = std::min(M - mb * BLOCK_M, BLOCK_M);

      // A shape [m_size, K]
      const uint8_t* A = Aq_tmp + mb * BLOCK_M * K;
      const float* As = As_tmp + mb * BLOCK_M;

      // B shape [K, n_size] in vnni format
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
      const int8_t* __restrict__ B0 = packed_w1 + nb_upper * BLOCK_N * stride_n;
      const int8_t* __restrict__ B1 = packed_w1 + nb_lower * BLOCK_N * stride_n;
      const float* __restrict__ Bs0 = w1s + nb_upper * BLOCK_N;
      const float* __restrict__ Bs1 = w1s + nb_lower * BLOCK_N;

      if (use_brgemm) {
        // 1.b gemm: C0 = A @ B0
        at::native::cpublas::brgemm(
            /* M     */ m_size,
            /* N     */ n_size,
            /* K     */ K,
            /* lda   */ K,
            /* ldb   */ n_size,
            /* ldc   */ BLOCK_N,
            /* add_C */ false,
            /* A     */ A,
            /* B     */ B0,
            /* C     */ C0);

        // 1.c gemm: C1 = A @ B1
        at::native::cpublas::brgemm(
            /* M     */ m_size,
            /* N     */ n_size,
            /* K     */ K,
            /* lda   */ K,
            /* ldb   */ n_size,
            /* ldc   */ BLOCK_N,
            /* add_C */ false,
            /* A     */ A,
            /* B     */ B1,
            /* C     */ C1);

        const int32_t* Bcomp0 = reinterpret_cast<const int32_t*>(B0 + block_size_n() * K);
        const int32_t* Bcomp1 = reinterpret_cast<const int32_t*>(B1 + block_size_n() * K);

        // 1.d silu and mul
        silu_and_mul<scalar_t, BLOCK_N>(
            ic1 + mb * BLOCK_M * N + nb * BLOCK_N, C0, C1, As, Bs0, Bs1, Bcomp0, Bcomp1, m_size, N);
      } else {
        // fused 1.bcd: silu_and_mul(A @ B0, A @ B1)
        tinygemm_kernel(
            /* A     */ A,
            /* B0    */ B0,
            /* B1    */ B1,
            /* C     */ ic1 + mb * BLOCK_M * N + nb * BLOCK_N,
            /* As    */ As,
            /* Bs0   */ Bs0,
            /* Bs1   */ Bs1,
            /* M     */ m_size,
            /* N     */ n_size,
            /* K     */ K,
            /* lda   */ K,
            /* ldb   */ n_size,
            /* ldc   */ N);
      }
    });

    if (use_brgemm) {
      at::native::cpublas::brgemm_release();
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
    }
  });

  // stage 1.5: quantize ic1 to uint8, [M * topk, N]
  at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
    for (int64_t m = begin; m < end; ++m) {
      quantize_row_int8<scalar_t>(Aq_tmp + m * N, As_tmp[m], ic1 + m * N, N);
    }
  });

  // stage 2: intermediate_cache2 = intermediate_cache1 @ w2
  //   w2 : [K, N] as [OC, IC]
  const int64_t OC = K;  // rename K as OC
  const int64_t IC = N;  // rename N as IC
  const int64_t MB2 = MB;
  const int64_t NB2 = div_up(OC, BLOCK_N);
  const int64_t stride_oc = packed_N;

  // parallel on [MB2, NB2]
985
  parallel_2d(MB2, NB2, [&](int64_t mb0, int64_t mb1, int64_t nb0, int64_t nb1) {
986
    // get local pointers
987
    int tid = get_thread_num();
988
    float* __restrict__ C = C_tmp + tid * 2 * BLOCK_M * BLOCK_N;
989
    int32_t* __restrict__ C32 = reinterpret_cast<int32_t*>(C + BLOCK_M * BLOCK_N);
990

991
    loop_2d<int8_t>(mb0, mb1, nb0, nb1, BLOCK_N * IC, [&](int64_t mb, int64_t nb, int64_t nb_offset) {
992
993
994
995
996
997
998
999
1000
1001
1002
      int64_t m_size = std::min(M - mb * BLOCK_M, BLOCK_M);
      int64_t n_size = std::min(OC - nb * BLOCK_N, BLOCK_N);

      // A shape [m_size, IC]
      const uint8_t* __restrict__ A = Aq_tmp + mb * BLOCK_M * N;
      const float* __restrict__ As = As_tmp + mb * BLOCK_M;

      // B shape [IC, n_size] in vnni format
      const int8_t* __restrict__ B = packed_w2 + nb * BLOCK_N * stride_oc;
      const float* __restrict__ Bs = w2s + nb * BLOCK_N;

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
      if (use_brgemm) {
        at::native::cpublas::brgemm(
            /* M     */ m_size,
            /* N     */ n_size,
            /* K     */ IC,
            /* lda   */ IC,
            /* ldb   */ n_size,
            /* ldc   */ BLOCK_N,
            /* add_C */ false,
            /* A     */ A,
            /* B     */ B,
            /* C     */ C32);

        // apply scales
        const int32_t* Bcomp = reinterpret_cast<const int32_t*>(B + block_size_n() * IC);
        scale_C<BLOCK_N>(C, C32, As, Bs, Bcomp, m_size);
      } else {
        // 2.a gemm: C = A @ B
        tinygemm_kernel<scalar_t>(
            /* A     */ A,
            /* B     */ B,
            /* C     */ C,
            /* As    */ As,
            /* Bs    */ Bs,
            /* M     */ m_size,
            /* N     */ n_size,
            /* K     */ IC,
            /* lda   */ IC,
            /* ldb   */ n_size,
            /* ldc   */ BLOCK_N);
      }
1034
1035
1036
1037
1038
1039
1040

      // 2.b copy from C to output and add fused_experts_out
      scalar_t* __restrict__ out = output + mb * BLOCK_M * K + nb * BLOCK_N;
      const scalar_t* __restrict__ fused_out = fused_experts_out + mb * BLOCK_M * K + nb * BLOCK_N;
      for (int64_t m = 0; m < m_size; ++m) {
        add_mul_stub(out + m * K, C + m * BLOCK_N, fused_out + m * K, routed_scaling_factor, n_size);
      }
1041
1042
1043
1044
    });

    if (use_brgemm) {
      at::native::cpublas::brgemm_release();
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
    }
  });
}

#define INSTANTIATE_SHARED_EXPERT_INT8_TEMPLATE(TYPE) \
  template void shared_expert_int8_kernel_impl<TYPE>( \
      TYPE* __restrict__ output,                      \
      TYPE* __restrict__ ic1,                         \
      float* __restrict__ C_tmp,                      \
      uint8_t* __restrict__ Aq_tmp,                   \
      float* __restrict__ As_tmp,                     \
      const TYPE* __restrict__ input,                 \
      const int8_t* __restrict__ packed_w1,           \
      const int8_t* __restrict__ packed_w2,           \
      const float* __restrict__ w1s,                  \
      const float* __restrict__ w2s,                  \
      const TYPE* __restrict__ fused_experts_out,     \
      float routed_scaling_factor,                    \
      int64_t M,                                      \
      int64_t N,                                      \
      int64_t K)

INSTANTIATE_SHARED_EXPERT_INT8_TEMPLATE(at::BFloat16);
INSTANTIATE_SHARED_EXPERT_INT8_TEMPLATE(at::Half);