common.h 10.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#pragma once

#include <ATen/ATen.h>
#include <ATen/Parallel.h>
#include <ATen/record_function.h>

#if defined(_OPENMP)
#include <omp.h>
#endif

namespace {

// dispatch bool
#define AT_DISPATCH_BOOL(BOOL_V, BOOL_NAME, ...) \
  [&] {                                          \
    if (BOOL_V) {                                \
      constexpr bool BOOL_NAME = true;           \
      return __VA_ARGS__();                      \
    } else {                                     \
      constexpr bool BOOL_NAME = false;          \
      return __VA_ARGS__();                      \
    }                                            \
  }()

25
// dispatch: bfloat16, float16, int8_t, fp8_e4m3
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#define CPU_DISPATCH_PACKED_TYPES(TYPE, ...)                     \
  [&] {                                                          \
    switch (TYPE) {                                              \
      case at::ScalarType::BFloat16: {                           \
        using packed_t = at::BFloat16;                           \
        return __VA_ARGS__();                                    \
      }                                                          \
      case at::ScalarType::Half: {                               \
        using packed_t = at::Half;                               \
        return __VA_ARGS__();                                    \
      }                                                          \
      case at::ScalarType::Char: {                               \
        using packed_t = int8_t;                                 \
        return __VA_ARGS__();                                    \
      }                                                          \
41
42
43
44
      case at::ScalarType::Float8_e4m3fn: {                      \
        using packed_t = at::Float8_e4m3fn;                      \
        return __VA_ARGS__();                                    \
      }                                                          \
45
46
47
48
49
      default:                                                   \
        TORCH_CHECK(false, "Unsupported floating data type.\n"); \
    }                                                            \
  }()

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
// dispatch with mixed dtypes (TYPE1, TYPE2):
//   TYPE1: the primary dtype (input, output, weight);
//   TYPE2: the secondary dtype (bias, etc.).
#define CPU_DISPATCH_REDUCED_FLOATING_TYPES_EXT(TYPE1, TYPE2, ...) \
  [&] {                                                            \
    if (TYPE2 == at::kFloat) {                                     \
      switch (TYPE1) {                                             \
        case at::ScalarType::BFloat16: {                           \
          using scalar_t = at::BFloat16;                           \
          using param_t = float;                                   \
          return __VA_ARGS__();                                    \
        }                                                          \
        case at::ScalarType::Half: {                               \
          using scalar_t = at::Half;                               \
          using param_t = float;                                   \
          return __VA_ARGS__();                                    \
        }                                                          \
        default:                                                   \
          TORCH_CHECK(false, "Unsupported floating data type.\n"); \
      }                                                            \
    } else {                                                       \
      TORCH_CHECK(TYPE1 == TYPE2);                                 \
      switch (TYPE1) {                                             \
        case at::ScalarType::BFloat16: {                           \
          using scalar_t = at::BFloat16;                           \
          using param_t = at::BFloat16;                            \
          return __VA_ARGS__();                                    \
        }                                                          \
        case at::ScalarType::Half: {                               \
          using scalar_t = at::Half;                               \
          using param_t = at::Half;                                \
          return __VA_ARGS__();                                    \
        }                                                          \
        default:                                                   \
          TORCH_CHECK(false, "Unsupported floating data type.\n"); \
      }                                                            \
    }                                                              \
  }()

89
90
91
92
93
94
#define UNUSED(x) (void)(x)

#define CHECK_CPU(x) TORCH_CHECK(x.device().type() == at::kCPU, #x " must be a CPU tensor")

#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_LAST_DIM_CONTIGUOUS(x) \
95
  TORCH_CHECK(x.strides()[x.strides().size() - 1] == 1, #x "must be contiguous at last dimension")
96
97
98
99
100
101
102
103
104
105
106
107

#define CHECK_INPUT(x) \
  CHECK_CPU(x);        \
  CHECK_CONTIGUOUS(x)
#define CHECK_LAST_DIM_CONTIGUOUS_INPUT(x) \
  CHECK_CPU(x);                            \
  CHECK_LAST_DIM_CONTIGUOUS(x)

#define CHECK_DIM(d, x) TORCH_CHECK(x.dim() == d, #x " must be a " #d "D tensor")

#define CHECK_EQ(a, b) TORCH_CHECK((a) == (b), "CHECK_EQ(" #a ", " #b ") failed. ", a, " vs ", b)

108
109
110
111
112
113
114
115
116
117
118
119
120
// [NB] Parallel Routines
//
//  * at::parallel_for - applies for most of generic use cases, this will be compiled
//                       against openmp in default torch release.
//
//  * parallel_for     - same function as above, can choose payload partition scheme in
//                       balance211.
//
//  * parallel_2d      - parallel for 2 dimensions, used in GEMM, etc.
//                       this one will do payload balance across 2 dimensions.
//

// grain size for each thread
121
122
123
124
125
126
127
constexpr int GRAIN_SIZE = 1024;

template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
inline T div_up(T x, T y) {
  return (x + y - 1) / y;
}

128
129
130
131
132
133
134
135
136
137
138
// you can only use at::get_thread_num() with at::parallel_for()
// as it is lazy initialized, otherwise it will always return 0.
inline int get_thread_num() {
#if defined(_OPENMP)
  return omp_get_thread_num();
#else
  return 0;
#endif
}

// balance payload across each thread
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
template <typename T>
inline void balance211(T n, T nth, T ith, T& n_start, T& n_end) {
#if 0
    // onednn partition pattern
    T& n_my = n_end;
    if (nth <= 1 || n == 0) {
        n_start = 0;
        n_my = n;
    } else {
        T n1 = div_up(n, nth);
        T n2 = n1 - 1;
        T T1 = n - n2 * nth;
        n_my = ith < T1 ? n1 : n2;
        n_start = ith <= T1 ? ith*n1 : T1 * n1 + (ith - T1) * n2;
    }
    n_end += n_start;
#else
  // pytorch aten partition pattern
  T n_my = div_up(n, nth);
  n_start = ith * n_my;
  n_end = std::min(n_start + n_my, n);
#endif
}

template <typename func_t>
inline void parallel_for(int n, const func_t& f) {
#if defined(_OPENMP)
#pragma omp parallel
  {
    int nth = omp_get_num_threads();
    int ith = omp_get_thread_num();
    int tbegin, tend;
    balance211(n, nth, ith, tbegin, tend);
    f(tbegin, tend);
  }
#else
  f(0, n);
#endif
}

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// for 1d parallel, use `actual_nth`
// for 2d parallel, use even nths, e.g. 43->42
int inline adjust_num_threads(int m) {
  int actual_nth = at::get_num_threads();
  if (m == 1) {
    return actual_nth;
  }
  return std::max(1, (actual_nth >> 1) * 2);
}

template <typename func_t>
inline void parallel_2d(int m, int n, const func_t& f) {
  // make sure we have even num_threads
  int nth = adjust_num_threads(m);

  // [NOTE] thread blocking:
  //
  //   1) prefer square block per thread
  //   2) use even number of CPU cores
  //   3) use all `num_threads` cores
  //
  //   we have:
  //     TM * TN = T
  //     BM / TM = BN / TN
  //   then:
  //     TM = ((BM / BN) * T) ^ 0.5
  //
  float r = float(m) / n;
  int nth_m = std::ceil(std::sqrt(r * nth));
  int nth_n = 1;
  for (; nth_m > 0; --nth_m) {
    nth_n = nth / nth_m;
    if (nth_m * nth_n == nth) {
      break;
    }
  }

#if defined(_OPENMP)
#pragma omp parallel num_threads(nth)
  {
    int ith = omp_get_thread_num();
    int ith_m = ith / nth_n;
    int ith_n = ith % nth_n;

    int thread_block_m = div_up(m, nth_m);
    int thread_block_n = div_up(n, nth_n);

    int begin_m = ith_m * thread_block_m;
    int end_m = std::min(m, begin_m + thread_block_m);
    int begin_n = ith_n * thread_block_n;
    int end_n = std::min(n, begin_n + thread_block_n);

    f(begin_m, end_m, begin_n, end_n);
  }
#else
  f(0, m, 0, n);
#endif
}

// limit max cache blocks
// when we need to do pre-unpack for weights, e.g. fp8
#define MAX_CACHE_BLOCK_SIZE 4

template <typename T>
inline int get_cache_blocks(int chunk_size) {
  // L2 2MB and ratio of 50%
  const int L2_size = 2048 * 1024 >> 1;
  return std::max(1, int(L2_size / (chunk_size * sizeof(T))));
}

template <>
inline int get_cache_blocks<at::Float8_e4m3fn>(int chunk_size) {
  // fp8 uses bf16 as accumulate type
  int cache_block_size = get_cache_blocks<at::BFloat16>(chunk_size);
  return std::min(MAX_CACHE_BLOCK_SIZE, cache_block_size);
}

// 2d sequential loop in range : [mb0, mb1), [nb0, nb1)
template <typename T, typename func_t>
inline void loop_2d(int64_t mb0, int64_t mb1, int64_t nb0, int64_t nb1, int64_t chunk_size, const func_t& f) {
  // get number of blocks for L2 in most inner loop
  int64_t cache_blocks_nb = get_cache_blocks<T>(chunk_size);

  // loop order: [NB / cache_blocks_nb, MB, cache_blocks_nb]
  // TODO: implement reverse order of [MB / cache_blocks_mb, NB, cache_blocks_mb]
  for (int64_t nbb = nb0; nbb < nb1; nbb += cache_blocks_nb) {
    for (int64_t mb = mb0; mb < mb1; ++mb) {
      for (int64_t nb = nbb; nb < std::min(nbb + cache_blocks_nb, nb1); ++nb) {
        f(mb, nb, nb - nbb);
      }
    }
  }
}

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
// data indexing for dimension collapse
template <typename T>
inline T data_index_init(T offset) {
  return offset;
}

template <typename T, typename... Args>
inline T data_index_init(T offset, T& x, const T& X, Args&&... args) {
  offset = data_index_init(offset, std::forward<Args>(args)...);
  x = offset % X;
  return offset / X;
}

inline bool data_index_step() {
  return true;
}

template <typename T, typename... Args>
inline bool data_index_step(T& x, const T& X, Args&&... args) {
  if (data_index_step(std::forward<Args>(args)...)) {
    x = ((x + 1) == X) ? 0 : (x + 1);
    return x == 0;
  }
  return false;
}

// forced unroll for perf critical path

#if __has_attribute(always_inline)
#define ALWAYS_INLINE __attribute__((__always_inline__)) inline
#else
#define ALWAYS_INLINE inline
#endif

template <int n>
struct Unroll {
  template <typename Func, typename... Args>
  ALWAYS_INLINE void operator()(const Func& f, Args... args) const {
    Unroll<n - 1>{}(f, args...);
    f(std::integral_constant<int, n - 1>{}, args...);
  }
};

template <>
struct Unroll<1> {
  template <typename Func, typename... Args>
  ALWAYS_INLINE void operator()(const Func& f, Args... args) const {
    f(std::integral_constant<int, 0>{}, args...);
  }
};

}  // anonymous namespace