openai_api_embeddings.ipynb 6.61 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
7
    "# OpenAI APIs - Embedding\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
9
10
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/guides/embeddings).\n",
Chayenne's avatar
Chayenne committed
11
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
12
13
14
    "This tutorial covers the embedding APIs for embedding models, such as  \n",
    "- [intfloat/e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct)  \n",
    "- [Alibaba-NLP/gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct)  \n"
Chayenne's avatar
Chayenne committed
15
16
17
18
19
20
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
21
22
23
    "## Launch A Server\n",
    "\n",
    "The following code is equivalent to running this in the shell:\n",
Chayenne's avatar
Chayenne committed
24
    "\n",
Chayenne's avatar
Chayenne committed
25
26
    "```bash\n",
    "python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct \\\n",
27
    "    --port 30010 --host 0.0.0.0 --is-embedding\n",
Chayenne's avatar
Chayenne committed
28
29
30
    "```\n",
    "\n",
    "Remember to add `--is-embedding` to the command."
Chayenne's avatar
Chayenne committed
31
32
33
34
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
35
   "execution_count": null,
Chayenne's avatar
Chayenne committed
36
37
38
39
40
41
42
43
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:47:32.337369Z",
     "iopub.status.busy": "2024-11-01T02:47:32.337032Z",
     "iopub.status.idle": "2024-11-01T02:47:59.540926Z",
     "shell.execute_reply": "2024-11-01T02:47:59.539861Z"
    }
   },
Chayenne's avatar
Chayenne committed
44
   "outputs": [],
Chayenne's avatar
Chayenne committed
45
   "source": [
46
47
48
49
50
51
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
52
    "\n",
Chayenne's avatar
Chayenne committed
53
54
    "embedding_process = execute_shell_command(\n",
    "    \"\"\"\n",
55
    "python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct \\\n",
56
    "    --port 30010 --host 0.0.0.0 --is-embedding\n",
Chayenne's avatar
Chayenne committed
57
58
    "\"\"\"\n",
    ")\n",
Chayenne's avatar
Chayenne committed
59
    "\n",
60
    "wait_for_server(\"http://localhost:30010\")"
Chayenne's avatar
Chayenne committed
61
62
63
64
65
66
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
67
    "## Using cURL"
Chayenne's avatar
Chayenne committed
68
69
70
71
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
72
   "execution_count": null,
Chayenne's avatar
Chayenne committed
73
74
75
76
77
78
79
80
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:47:59.543958Z",
     "iopub.status.busy": "2024-11-01T02:47:59.543670Z",
     "iopub.status.idle": "2024-11-01T02:47:59.591699Z",
     "shell.execute_reply": "2024-11-01T02:47:59.590809Z"
    }
   },
Chayenne's avatar
Chayenne committed
81
   "outputs": [],
Chayenne's avatar
Chayenne committed
82
   "source": [
Chayenne's avatar
Chayenne committed
83
84
85
    "import subprocess, json\n",
    "\n",
    "text = \"Once upon a time\"\n",
Chayenne's avatar
Chayenne committed
86
    "\n",
Chayenne's avatar
Chayenne committed
87
88
89
90
91
92
93
    "curl_text = f\"\"\"curl -s http://localhost:30010/v1/embeddings \\\n",
    "  -d '{{\"model\": \"Alibaba-NLP/gte-Qwen2-7B-instruct\", \"input\": \"{text}\"}}'\"\"\"\n",
    "\n",
    "text_embedding = json.loads(subprocess.check_output(curl_text, shell=True))[\"data\"][0][\n",
    "    \"embedding\"\n",
    "]\n",
    "\n",
94
    "print_highlight(f\"Text embedding (first 10): {text_embedding[:10]}\")"
Chayenne's avatar
Chayenne committed
95
96
97
98
99
100
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
101
    "## Using Python Requests"
Chayenne's avatar
Chayenne committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
    "\n",
    "text = \"Once upon a time\"\n",
    "\n",
    "response = requests.post(\n",
    "    \"http://localhost:30010/v1/embeddings\",\n",
    "    json={\n",
    "        \"model\": \"Alibaba-NLP/gte-Qwen2-7B-instruct\",\n",
    "        \"input\": text\n",
    "    }\n",
    ")\n",
    "\n",
    "text_embedding = response.json()[\"data\"][0][\"embedding\"]\n",
    "\n",
    "print_highlight(f\"Text embedding (first 10): {text_embedding[:10]}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using OpenAI Python Client"
Chayenne's avatar
Chayenne committed
132
133
134
135
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
136
   "execution_count": null,
Chayenne's avatar
Chayenne committed
137
138
139
140
141
142
143
144
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:47:59.594229Z",
     "iopub.status.busy": "2024-11-01T02:47:59.594049Z",
     "iopub.status.idle": "2024-11-01T02:48:00.006233Z",
     "shell.execute_reply": "2024-11-01T02:48:00.005255Z"
    }
   },
Chayenne's avatar
Chayenne committed
145
   "outputs": [],
Chayenne's avatar
Chayenne committed
146
147
148
   "source": [
    "import openai\n",
    "\n",
Chayenne's avatar
Chayenne committed
149
    "client = openai.Client(base_url=\"http://127.0.0.1:30010/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
150
151
152
153
    "\n",
    "# Text embedding example\n",
    "response = client.embeddings.create(\n",
    "    model=\"Alibaba-NLP/gte-Qwen2-7B-instruct\",\n",
Chayenne's avatar
Chayenne committed
154
    "    input=text,\n",
Chayenne's avatar
Chayenne committed
155
156
157
    ")\n",
    "\n",
    "embedding = response.data[0].embedding[:10]\n",
158
    "print_highlight(f\"Text embedding (first 10): {embedding}\")"
Chayenne's avatar
Chayenne committed
159
160
161
162
163
164
165
166
167
168
169
170
171
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using Input IDs\n",
    "\n",
    "SGLang also supports `input_ids` as input to get the embedding."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
172
   "execution_count": null,
Chayenne's avatar
Chayenne committed
173
174
175
176
177
178
179
180
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:48:00.008858Z",
     "iopub.status.busy": "2024-11-01T02:48:00.008689Z",
     "iopub.status.idle": "2024-11-01T02:48:01.872542Z",
     "shell.execute_reply": "2024-11-01T02:48:01.871573Z"
    }
   },
Chayenne's avatar
Chayenne committed
181
   "outputs": [],
Chayenne's avatar
Chayenne committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
   "source": [
    "import json\n",
    "import os\n",
    "from transformers import AutoTokenizer\n",
    "\n",
    "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"Alibaba-NLP/gte-Qwen2-7B-instruct\")\n",
    "input_ids = tokenizer.encode(text)\n",
    "\n",
    "curl_ids = f\"\"\"curl -s http://localhost:30010/v1/embeddings \\\n",
    "  -d '{{\"model\": \"Alibaba-NLP/gte-Qwen2-7B-instruct\", \"input\": {json.dumps(input_ids)}}}'\"\"\"\n",
    "\n",
    "input_ids_embedding = json.loads(subprocess.check_output(curl_ids, shell=True))[\"data\"][\n",
    "    0\n",
    "][\"embedding\"]\n",
    "\n",
199
    "print_highlight(f\"Input IDs embedding (first 10): {input_ids_embedding[:10]}\")"
Chayenne's avatar
Chayenne committed
200
   ]
201
202
203
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
204
   "execution_count": 6,
Chayenne's avatar
Chayenne committed
205
206
207
208
209
210
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:48:01.875204Z",
     "iopub.status.busy": "2024-11-01T02:48:01.874915Z",
     "iopub.status.idle": "2024-11-01T02:48:02.193734Z",
     "shell.execute_reply": "2024-11-01T02:48:02.192158Z"
211
    }
Chayenne's avatar
Chayenne committed
212
213
   },
   "outputs": [],
214
215
216
   "source": [
    "terminate_process(embedding_process)"
   ]
Chayenne's avatar
Chayenne committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "AlphaMeemory",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}