test_skip_tokenizer_init.py 7.66 KB
Newer Older
1
2
3
4
5
"""
python3 -m unittest test_skip_tokenizer_init.TestSkipTokenizerInit.test_parallel_sample
python3 -m unittest test_skip_tokenizer_init.TestSkipTokenizerInit.run_decode_stream
"""

6
7
import json
import unittest
8
from io import BytesIO
9
10

import requests
11
12
from PIL import Image
from transformers import AutoProcessor, AutoTokenizer
13

14
from sglang.lang.chat_template import get_chat_template_by_model_path
15
from sglang.srt.utils import kill_process_tree
16
from sglang.test.test_utils import (
17
    DEFAULT_IMAGE_URL,
Lianmin Zheng's avatar
Lianmin Zheng committed
18
    DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
19
    DEFAULT_SMALL_VLM_MODEL_NAME,
20
21
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
22
23
    popen_launch_server,
)
24
25


26
class TestSkipTokenizerInit(unittest.TestCase):
27
28
29
30
31
32
33
34
35
36
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=["--skip-tokenizer-init", "--stream-output"],
        )
37
        cls.eos_token_id = [119690]
38
39
40
41
42
43
44
45
        cls.tokenizer = AutoTokenizer.from_pretrained(
            DEFAULT_SMALL_MODEL_NAME_FOR_TEST, use_fast=False
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

46
47
48
49
50
51
52
53
    def run_decode(
        self,
        prompt_text="The capital of France is",
        max_new_tokens=32,
        return_logprob=False,
        top_logprobs_num=0,
        n=1,
    ):
54
        input_ids = self.get_input_ids(prompt_text)
55
56

        response = requests.post(
57
            self.base_url + "/generate",
58
            json={
59
                "input_ids": input_ids,
60
61
                "sampling_params": {
                    "temperature": 0 if n == 1 else 0.5,
62
                    "max_new_tokens": max_new_tokens,
63
                    "n": n,
64
                    "stop_token_ids": [self.tokenizer.eos_token_id],
65
66
67
68
69
70
71
                },
                "stream": False,
                "return_logprob": return_logprob,
                "top_logprobs_num": top_logprobs_num,
                "logprob_start_len": 0,
            },
        )
72
        ret = response.json()
73
        print(json.dumps(ret, indent=2))
74
75

        def assert_one_item(item):
76
77
78
            if item["meta_info"]["finish_reason"]["type"] == "stop":
                self.assertEqual(
                    item["meta_info"]["finish_reason"]["matched"],
79
                    self.tokenizer.eos_token_id,
80
81
82
                )
            elif item["meta_info"]["finish_reason"]["type"] == "length":
                self.assertEqual(
83
                    len(item["output_ids"]), item["meta_info"]["completion_tokens"]
84
                )
85
                self.assertEqual(len(item["output_ids"]), max_new_tokens)
86
87
88
89
90
91
92
93
94
95
96
97
98
99
                self.assertEqual(item["meta_info"]["prompt_tokens"], len(input_ids))

                if return_logprob:
                    self.assertEqual(
                        len(item["meta_info"]["input_token_logprobs"]),
                        len(input_ids),
                        f'{len(item["meta_info"]["input_token_logprobs"])} mismatch with {len(input_ids)}',
                    )
                    self.assertEqual(
                        len(item["meta_info"]["output_token_logprobs"]),
                        max_new_tokens,
                    )

        # Determine whether to assert a single item or multiple items based on n
100
101
102
        if n == 1:
            assert_one_item(ret)
        else:
103
            self.assertEqual(len(ret), n)
104
105
106
            for i in range(n):
                assert_one_item(ret[i])

107
108
        print("=" * 100)

109
110
    def run_decode_stream(self, return_logprob=False, top_logprobs_num=0, n=1):
        max_new_tokens = 32
111
        input_ids = self.get_input_ids("The capital of France is")
112
113
114
115
116
117
118
119
120
        requests.post(self.base_url + "/flush_cache")
        response = requests.post(
            self.base_url + "/generate",
            json={
                "input_ids": input_ids,
                "sampling_params": {
                    "temperature": 0 if n == 1 else 0.5,
                    "max_new_tokens": max_new_tokens,
                    "n": n,
121
                    "stop_token_ids": self.eos_token_id,
122
123
124
125
126
127
128
129
130
131
                },
                "stream": False,
                "return_logprob": return_logprob,
                "top_logprobs_num": top_logprobs_num,
                "logprob_start_len": 0,
            },
        )
        ret = response.json()
        print(json.dumps(ret))
        output_ids = ret["output_ids"]
132
133
134
        print("output from non-streaming request:")
        print(output_ids)
        print(self.tokenizer.decode(output_ids, skip_special_tokens=True))
135
136
137
138
139
140
141
142
143
144

        requests.post(self.base_url + "/flush_cache")
        response_stream = requests.post(
            self.base_url + "/generate",
            json={
                "input_ids": input_ids,
                "sampling_params": {
                    "temperature": 0 if n == 1 else 0.5,
                    "max_new_tokens": max_new_tokens,
                    "n": n,
145
                    "stop_token_ids": self.eos_token_id,
146
147
148
149
150
151
152
153
154
155
                },
                "stream": True,
                "return_logprob": return_logprob,
                "top_logprobs_num": top_logprobs_num,
                "logprob_start_len": 0,
            },
        )

        response_stream_json = []
        for line in response_stream.iter_lines():
156
            print(line)
157
158
159
160
161
162
163
            if line.startswith(b"data: ") and line[6:] != b"[DONE]":
                response_stream_json.append(json.loads(line[6:]))
        out_stream_ids = []
        for x in response_stream_json:
            out_stream_ids += x["output_ids"]
        print("output from streaming request:")
        print(out_stream_ids)
164
165
        print(self.tokenizer.decode(out_stream_ids, skip_special_tokens=True))

166
167
        assert output_ids == out_stream_ids

168
169
170
171
172
173
174
175
    def test_simple_decode(self):
        self.run_decode()

    def test_parallel_sample(self):
        self.run_decode(n=3)

    def test_logprob(self):
        for top_logprobs_num in [0, 3]:
176
177
178
179
            self.run_decode(return_logprob=True, top_logprobs_num=top_logprobs_num)

    def test_eos_behavior(self):
        self.run_decode(max_new_tokens=256)
180

181
182
183
    def test_simple_decode_stream(self):
        self.run_decode_stream()

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def get_input_ids(self, prompt_text) -> list[int]:
        input_ids = self.tokenizer(prompt_text, return_tensors="pt")["input_ids"][
            0
        ].tolist()
        return input_ids


class TestSkipTokenizerInitVLM(TestSkipTokenizerInit):
    @classmethod
    def setUpClass(cls):
        cls.image_url = DEFAULT_IMAGE_URL
        response = requests.get(cls.image_url)
        cls.image = Image.open(BytesIO(response.content))
        cls.model = DEFAULT_SMALL_VLM_MODEL_NAME
        cls.tokenizer = AutoTokenizer.from_pretrained(cls.model, use_fast=False)
        cls.processor = AutoProcessor.from_pretrained(cls.model, trust_remote_code=True)
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=["--skip-tokenizer-init"],
        )
        cls.eos_token_id = [cls.tokenizer.eos_token_id]

    def get_input_ids(self, _prompt_text) -> list[int]:
        chat_template = get_chat_template_by_model_path(self.model)
        text = f"{chat_template.image_token}What is in this picture?"
        inputs = self.processor(
            text=[text],
            images=[self.image],
            return_tensors="pt",
        )

        return inputs.input_ids[0].tolist()

    def test_simple_decode_stream(self):
        # TODO mick
        pass

224
225

if __name__ == "__main__":
Lianmin Zheng's avatar
Lianmin Zheng committed
226
    unittest.main()