moe_align_kernel.cu 8.65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

16
17
18
19
20
21
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>

#include <THC/THCAtomics.cuh>

22
#include "utils.h"
23

24
25
26
27
28
29
template <typename T, int N, int Alignment = sizeof(T) * N>
class alignas(Alignment) AlignedArray {
 public:
  T data[N];
};

30
#define WARP_SIZE 32
31

32
33
34
#define VEC_SIZE 4
using Vec = AlignedArray<int32_t, VEC_SIZE>;

35
template <typename scalar_t>
36
37
38
39
40
__global__ void count_and_sort_expert_tokens_kernel(
    const scalar_t* __restrict__ topk_ids,
    int32_t* __restrict__ sorted_token_ids,
    int32_t* __restrict__ cumsum_buffer,
    size_t numel) {
41
42
  const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
  const size_t stride = blockDim.x * gridDim.x;
43

44
45
46
47
  for (size_t i = tid; i < numel; i += stride) {
    int32_t expert_id = topk_ids[i];
    int32_t rank_post_pad = atomicAdd(&cumsum_buffer[expert_id], 1);
    sorted_token_ids[rank_post_pad] = i;
48
49
  }
}
50

51
template <typename scalar_t>
52
53
54
55
56
57
__global__ void moe_align_block_size_kernel(
    const scalar_t* __restrict__ topk_ids,
    int32_t* __restrict__ sorted_token_ids,
    int32_t* __restrict__ expert_ids,
    int32_t* __restrict__ total_tokens_post_pad,
    int32_t num_experts,
58
    int32_t padded_num_experts,
59
    int32_t experts_per_warp,
60
61
    int32_t block_size,
    size_t numel,
62
63
    int32_t* __restrict__ cumsum,
    bool pad_sorted_token_ids) {
64
  extern __shared__ int32_t shared_counts[];
65

66
67
  const int warp_id = threadIdx.x / WARP_SIZE;
  const int my_expert_start = warp_id * experts_per_warp;
68

69
  for (int i = 0; i < experts_per_warp; ++i) {
70
    if (my_expert_start + i < padded_num_experts) {
71
      shared_counts[warp_id * experts_per_warp + i] = 0;
72
73
    }
  }
74

75
  __syncthreads();
76

77
78
  const size_t tid = threadIdx.x;
  const size_t stride = blockDim.x;
79

80
  for (size_t i = tid; i < numel; i += stride) {
81
82
83
    int expert_id = topk_ids[i];
    int warp_idx = expert_id / experts_per_warp;
    int expert_offset = expert_id % experts_per_warp;
84
    atomicAdd(&shared_counts[warp_idx * experts_per_warp + expert_offset], 1);
85
86
87
88
89
  }

  __syncthreads();

  if (threadIdx.x == 0) {
90
91
92
    cumsum[0] = 0;
    for (int i = 1; i <= num_experts; ++i) {
      int expert_count = 0;
93
94
      int warp_idx = (i - 1) / experts_per_warp;
      int expert_offset = (i - 1) % experts_per_warp;
95
      expert_count = shared_counts[warp_idx * experts_per_warp + expert_offset];
96

97
      cumsum[i] = cumsum[i - 1] + CEILDIV(expert_count, block_size) * block_size;
98
    }
99
    *total_tokens_post_pad = cumsum[num_experts];
100
101
102
103
104
  }

  __syncthreads();

  if (threadIdx.x < num_experts) {
105
106
    for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1]; i += block_size) {
      expert_ids[i / block_size] = threadIdx.x;
107
108
    }
  }
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

  if (pad_sorted_token_ids) {
    int32_t fill_val = static_cast<int32_t>(numel);
    int32_t total = *total_tokens_post_pad;

    Vec fill_vec;
#pragma unroll
    for (int i = 0; i < VEC_SIZE; ++i) {
      fill_vec.data[i] = fill_val;
    }

    int32_t total_vec_count = (total + VEC_SIZE - 1) / VEC_SIZE;
    Vec* out_ptr = reinterpret_cast<Vec*>(sorted_token_ids);

    for (int32_t idx = tid; idx < total_vec_count; idx += stride) {
      out_ptr[idx] = fill_vec;
    }
  }
127
128
}

129
130
131
132
133
134
135
136
template <typename scalar_t>
__global__ void moe_align_block_size_small_batch_expert_kernel(
    const scalar_t* __restrict__ topk_ids,
    int32_t* __restrict__ sorted_token_ids,
    int32_t* __restrict__ expert_ids,
    int32_t* __restrict__ total_tokens_post_pad,
    int32_t num_experts,
    int32_t block_size,
137
138
    size_t numel,
    bool pad_sorted_token_ids) {
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
  const size_t tid = threadIdx.x;
  const size_t stride = blockDim.x;

  extern __shared__ int32_t shared_mem[];
  int32_t* cumsum = shared_mem;
  int32_t* tokens_cnts = (int32_t*)(shared_mem + num_experts + 1);

  for (int i = 0; i < num_experts; ++i) {
    tokens_cnts[(threadIdx.x + 1) * num_experts + i] = 0;
  }

  for (size_t i = tid; i < numel; i += stride) {
    ++tokens_cnts[(threadIdx.x + 1) * num_experts + topk_ids[i]];
  }

  __syncthreads();

  if (threadIdx.x < num_experts) {
    tokens_cnts[threadIdx.x] = 0;
    for (int i = 1; i <= blockDim.x; ++i) {
      tokens_cnts[i * num_experts + threadIdx.x] += tokens_cnts[(i - 1) * num_experts + threadIdx.x];
    }
  }

  __syncthreads();

  if (threadIdx.x == 0) {
    cumsum[0] = 0;
    for (int i = 1; i <= num_experts; ++i) {
      cumsum[i] = cumsum[i - 1] + CEILDIV(tokens_cnts[blockDim.x * num_experts + i - 1], block_size) * block_size;
    }
    *total_tokens_post_pad = static_cast<int32_t>(cumsum[num_experts]);
  }

  __syncthreads();

  if (threadIdx.x < num_experts) {
    for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1]; i += block_size) {
      expert_ids[i / block_size] = threadIdx.x;
    }
  }

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  if (pad_sorted_token_ids) {
    int32_t fill_val = static_cast<int32_t>(numel);
    int32_t total = *total_tokens_post_pad;

    Vec fill_vec;
#pragma unroll
    for (int i = 0; i < VEC_SIZE; ++i) {
      fill_vec.data[i] = fill_val;
    }

    int32_t total_vec_count = (total + VEC_SIZE - 1) / VEC_SIZE;
    Vec* out_ptr = reinterpret_cast<Vec*>(sorted_token_ids);

    for (int32_t idx = tid; idx < total_vec_count; idx += stride) {
      out_ptr[idx] = fill_vec;
    }
  }

  __syncthreads();

201
202
203
204
205
206
207
208
  for (size_t i = tid; i < numel; i += stride) {
    int32_t expert_id = topk_ids[i];
    int32_t rank_post_pad = tokens_cnts[threadIdx.x * num_experts + expert_id] + cumsum[expert_id];
    sorted_token_ids[rank_post_pad] = i;
    ++tokens_cnts[threadIdx.x * num_experts + expert_id];
  }
}

209
210
211
212
213
214
215
216
void moe_align_block_size(
    torch::Tensor topk_ids,
    int64_t num_experts,
    int64_t block_size,
    torch::Tensor sorted_token_ids,
    torch::Tensor experts_ids,
    torch::Tensor num_tokens_post_pad,
    torch::Tensor token_cnts_buffer,
217
218
    torch::Tensor cumsum_buffer,
    bool pad_sorted_token_ids) {
219
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
220
221
222

  int64_t padded_num_experts = ((num_experts + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;

223
224
  int experts_per_warp = WARP_SIZE;
  int threads = 1024;
225
226
227

  threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;

228
  DISPATCH_INTEGRAL_TYPES(topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    bool small_batch_expert_mode = (topk_ids.numel() < 1024) && (num_experts <= 64);

    if (small_batch_expert_mode) {
      const int32_t threads = max((int32_t)num_experts, WARP_SIZE);
      const int32_t shared_mem_size = ((threads + 1) * num_experts + (num_experts + 1)) * sizeof(int32_t);

      auto small_batch_expert_kernel = moe_align_block_size_small_batch_expert_kernel<scalar_t>;
      small_batch_expert_kernel<<<1, threads, shared_mem_size, stream>>>(
          topk_ids.data_ptr<scalar_t>(),
          sorted_token_ids.data_ptr<int32_t>(),
          experts_ids.data_ptr<int32_t>(),
          num_tokens_post_pad.data_ptr<int32_t>(),
          num_experts,
          block_size,
243
244
          topk_ids.numel(),
          pad_sorted_token_ids);
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    } else {
      auto align_kernel = moe_align_block_size_kernel<scalar_t>;

      size_t num_warps = CEILDIV(padded_num_experts, experts_per_warp);
      size_t shared_mem_size = num_warps * experts_per_warp * sizeof(int32_t);

      align_kernel<<<1, threads, shared_mem_size, stream>>>(
          topk_ids.data_ptr<scalar_t>(),
          sorted_token_ids.data_ptr<int32_t>(),
          experts_ids.data_ptr<int32_t>(),
          num_tokens_post_pad.data_ptr<int32_t>(),
          num_experts,
          padded_num_experts,
          experts_per_warp,
          block_size,
          topk_ids.numel(),
261
262
          cumsum_buffer.data_ptr<int32_t>(),
          pad_sorted_token_ids);
263
264
265
266
267
268
269
270
271
272
273
274
275

      const int block_threads = std::min(256, (int)threads);
      const int num_blocks = (topk_ids.numel() + block_threads - 1) / block_threads;
      const int max_blocks = 65535;
      const int actual_blocks = std::min(num_blocks, max_blocks);

      auto sort_kernel = count_and_sort_expert_tokens_kernel<scalar_t>;
      sort_kernel<<<actual_blocks, block_threads, 0, stream>>>(
          topk_ids.data_ptr<scalar_t>(),
          sorted_token_ids.data_ptr<int32_t>(),
          cumsum_buffer.data_ptr<int32_t>(),
          topk_ids.numel());
    }
276
277
  });
}