openai_api.ipynb 44.5 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
7
8
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# OpenAI Compatible API\n",
    "\n",
9
10
11
    "SGLang provides an OpenAI compatible API for smooth transition from OpenAI services. Full reference of the API is available at [OpenAI API Reference](https://platform.openai.com/docs/api-reference).\n",
    "\n",
    "This tutorial aims at these popular APIs:\n",
Chayenne's avatar
Chayenne committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    "\n",
    "- `chat/completions`\n",
    "- `completions`\n",
    "- `batches`\n",
    "- `embeddings`(refer to [embedding_model.ipynb](embedding_model.ipynb))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chat Completions\n",
    "\n",
    "### Usage\n",
    "\n",
    "Similar to [send_request.ipynb](send_request.ipynb), we can send a chat completion request to SGLang server with OpenAI API format."
   ]
  },
  {
   "cell_type": "code",
32
   "execution_count": 1,
Chayenne's avatar
Chayenne committed
33
34
35
36
37
38
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
      "/home/chenyang/miniconda3/envs/AlphaMeemory/lib/python3.11/site-packages/transformers/utils/hub.py:127: FutureWarning: Using `TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.\n",
      "  warnings.warn(\n",
      "[2024-10-28 02:02:31] server_args=ServerArgs(model_path='meta-llama/Meta-Llama-3.1-8B-Instruct', tokenizer_path='meta-llama/Meta-Llama-3.1-8B-Instruct', tokenizer_mode='auto', skip_tokenizer_init=False, load_format='auto', trust_remote_code=False, dtype='auto', kv_cache_dtype='auto', quantization=None, context_length=None, device='cuda', served_model_name='meta-llama/Meta-Llama-3.1-8B-Instruct', chat_template=None, is_embedding=False, host='0.0.0.0', port=30000, mem_fraction_static=0.88, max_running_requests=None, max_total_tokens=None, chunked_prefill_size=8192, max_prefill_tokens=16384, schedule_policy='lpm', schedule_conservativeness=1.0, tp_size=1, stream_interval=1, random_seed=800169736, constrained_json_whitespace_pattern=None, log_level='info', log_level_http=None, log_requests=False, show_time_cost=False, api_key=None, file_storage_pth='SGLang_storage', enable_cache_report=False, watchdog_timeout=600, dp_size=1, load_balance_method='round_robin', dist_init_addr=None, nnodes=1, node_rank=0, json_model_override_args='{}', enable_double_sparsity=False, ds_channel_config_path=None, ds_heavy_channel_num=32, ds_heavy_token_num=256, ds_heavy_channel_type='qk', ds_sparse_decode_threshold=4096, lora_paths=None, max_loras_per_batch=8, attention_backend='flashinfer', sampling_backend='flashinfer', grammar_backend='outlines', disable_flashinfer=False, disable_flashinfer_sampling=False, disable_radix_cache=False, disable_regex_jump_forward=False, disable_cuda_graph=False, disable_cuda_graph_padding=False, disable_disk_cache=False, disable_custom_all_reduce=False, disable_mla=False, disable_penalizer=False, disable_nan_detection=False, enable_overlap_schedule=False, enable_mixed_chunk=False, enable_torch_compile=False, torch_compile_max_bs=32, cuda_graph_max_bs=160, torchao_config='', enable_p2p_check=False, triton_attention_reduce_in_fp32=False, num_continuous_decode_steps=1)\n",
      "/home/chenyang/miniconda3/envs/AlphaMeemory/lib/python3.11/site-packages/transformers/utils/hub.py:127: FutureWarning: Using `TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.\n",
      "  warnings.warn(\n",
      "/home/chenyang/miniconda3/envs/AlphaMeemory/lib/python3.11/site-packages/transformers/utils/hub.py:127: FutureWarning: Using `TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.\n",
      "  warnings.warn(\n",
      "[2024-10-28 02:02:36 TP0] Init torch distributed begin.\n",
      "[2024-10-28 02:02:37 TP0] Load weight begin. avail mem=47.27 GB\n",
      "[2024-10-28 02:02:37 TP0] Ignore import error when loading sglang.srt.models.mllama. No module named 'transformers.models.mllama'\n",
      "INFO 10-28 02:02:38 weight_utils.py:236] Using model weights format ['*.safetensors']\n",
      "Loading safetensors checkpoint shards:   0% Completed | 0/4 [00:00<?, ?it/s]\n",
      "Loading safetensors checkpoint shards:  25% Completed | 1/4 [00:00<00:01,  2.57it/s]\n",
      "Loading safetensors checkpoint shards:  50% Completed | 2/4 [00:00<00:00,  2.45it/s]\n",
      "Loading safetensors checkpoint shards:  75% Completed | 3/4 [00:00<00:00,  3.53it/s]\n",
      "Loading safetensors checkpoint shards: 100% Completed | 4/4 [00:01<00:00,  2.98it/s]\n",
      "Loading safetensors checkpoint shards: 100% Completed | 4/4 [00:01<00:00,  2.94it/s]\n",
      "\n",
      "[2024-10-28 02:02:40 TP0] Load weight end. type=LlamaForCausalLM, dtype=torch.bfloat16, avail mem=32.22 GB\n",
      "[2024-10-28 02:02:40 TP0] Memory pool end. avail mem=4.60 GB\n",
      "[2024-10-28 02:02:40 TP0] Capture cuda graph begin. This can take up to several minutes.\n",
      "[2024-10-28 02:02:48 TP0] max_total_num_tokens=217512, max_prefill_tokens=16384, max_running_requests=2049, context_len=131072\n",
      "[2024-10-28 02:02:48] INFO:     Started server process [1185529]\n",
      "[2024-10-28 02:02:48] INFO:     Waiting for application startup.\n",
      "[2024-10-28 02:02:48] INFO:     Application startup complete.\n",
      "[2024-10-28 02:02:48] INFO:     Uvicorn running on http://0.0.0.0:30000 (Press CTRL+C to quit)\n",
      "[2024-10-28 02:02:48] INFO:     127.0.0.1:47904 - \"GET /v1/models HTTP/1.1\" 200 OK\n"
Chayenne's avatar
Chayenne committed
66
     ]
67
68
69
70
71
72
73
74
75
76
77
78
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Server is ready. Proceeding with the next steps.</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
Chayenne's avatar
Chayenne committed
79
80
81
    }
   ],
   "source": [
82
83
84
85
86
87
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
Chayenne's avatar
Chayenne committed
88
89
    "\n",
    "server_process = execute_shell_command(\n",
90
    "    command=\"python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --port 30000 --host 0.0.0.0\"\n",
Chayenne's avatar
Chayenne committed
91
92
    ")\n",
    "\n",
93
    "wait_for_server(\"http://localhost:30000\")"
Chayenne's avatar
Chayenne committed
94
95
96
97
   ]
  },
  {
   "cell_type": "code",
98
   "execution_count": 2,
Chayenne's avatar
Chayenne committed
99
100
101
102
103
104
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
105
106
107
108
109
110
111
      "[2024-10-28 02:02:49 TP0] Prefill batch. #new-seq: 1, #new-token: 49, #cached-token: 0, cache hit rate: 0.00%, token usage: 0.00, #running-req: 0, #queue-req: 0\n",
      "[2024-10-28 02:02:49] INFO:     127.0.0.1:47912 - \"GET /get_model_info HTTP/1.1\" 200 OK\n",
      "[2024-10-28 02:02:49 TP0] Prefill batch. #new-seq: 1, #new-token: 6, #cached-token: 1, cache hit rate: 1.79%, token usage: 0.00, #running-req: 1, #queue-req: 0\n",
      "[2024-10-28 02:02:49] INFO:     127.0.0.1:47926 - \"POST /generate HTTP/1.1\" 200 OK\n",
      "[2024-10-28 02:02:49] The server is fired up and ready to roll!\n",
      "[2024-10-28 02:02:50 TP0] Decode batch. #running-req: 1, #token: 89, token usage: 0.00, gen throughput (token/s): 24.12, #queue-req: 0\n",
      "[2024-10-28 02:02:50] INFO:     127.0.0.1:47910 - \"POST /v1/chat/completions HTTP/1.1\" 200 OK\n"
Chayenne's avatar
Chayenne committed
112
     ]
113
114
115
116
117
118
119
120
121
122
123
124
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Response: ChatCompletion(id='692899ebd3ea464dbb456008a7d60bf3', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='Here are 3 countries and their capitals:\\n\\n1. **Country:** Japan\\n**Capital:** Tokyo\\n\\n2. **Country:** Australia\\n**Capital:** Canberra\\n\\n3. **Country:** Brazil\\n**Capital:** Brasília', refusal=None, role='assistant', function_call=None, tool_calls=None), matched_stop=128009)], created=1730106170, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion', service_tier=None, system_fingerprint=None, usage=CompletionUsage(completion_tokens=46, prompt_tokens=49, total_tokens=95, prompt_tokens_details=None))</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
Chayenne's avatar
Chayenne committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    }
   ],
   "source": [
    "import openai\n",
    "\n",
    "# Always assign an api_key, even if not specified during server initialization.\n",
    "# Setting an API key during server initialization is strongly recommended.\n",
    "\n",
    "client = openai.Client(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "# Chat completion example\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"system\", \"content\": \"You are a helpful AI assistant\"},\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
146
147
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
148
149
150
151
152
153
154
155
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
156
    "The chat completions API accepts OpenAI Chat Completions API's parameters. Refer to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat/create) for more details.\n",
Chayenne's avatar
Chayenne committed
157
158
159
160
161
162
    "\n",
    "Here is an example of a detailed chat completion request:"
   ]
  },
  {
   "cell_type": "code",
163
   "execution_count": 3,
Chayenne's avatar
Chayenne committed
164
165
166
167
168
169
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
170
171
      "[2024-10-28 02:02:50 TP0] Prefill batch. #new-seq: 1, #new-token: 48, #cached-token: 28, cache hit rate: 21.97%, token usage: 0.00, #running-req: 0, #queue-req: 0\n",
      "[2024-10-28 02:02:50] INFO:     127.0.0.1:47910 - \"POST /v1/chat/completions HTTP/1.1\" 200 OK\n"
Chayenne's avatar
Chayenne committed
172
     ]
173
174
175
176
177
178
179
180
181
182
183
184
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Response: ChatCompletion(id='bffa083869484c78ab89d334514d5af3', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content=\"Ancient Rome's major achievements include:\", refusal=None, role='assistant', function_call=None, tool_calls=None), matched_stop='\\n\\n')], created=1730106170, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='chat.completion', service_tier=None, system_fingerprint=None, usage=CompletionUsage(completion_tokens=8, prompt_tokens=76, total_tokens=84, prompt_tokens_details=None))</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
Chayenne's avatar
Chayenne committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    }
   ],
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": \"You are a knowledgeable historian who provides concise responses.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"Tell me about ancient Rome\"},\n",
    "        {\n",
    "            \"role\": \"assistant\",\n",
    "            \"content\": \"Ancient Rome was a civilization centered in Italy.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"What were their major achievements?\"},\n",
    "    ],\n",
    "    temperature=0.3,  # Lower temperature for more focused responses\n",
    "    max_tokens=100,  # Reasonable length for a concise response\n",
    "    top_p=0.95,  # Slightly higher for better fluency\n",
    "    stop=[\"\\n\\n\"],  # Simple stop sequence\n",
    "    presence_penalty=0.2,  # Mild penalty to avoid repetition\n",
    "    frequency_penalty=0.2,  # Mild penalty for more natural language\n",
    "    n=1,  # Single response is usually more stable\n",
    "    seed=42,  # Keep for reproducibility\n",
    ")\n",
    "\n",
212
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
213
214
215
216
217
218
219
220
221
222
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Completions\n",
    "\n",
    "### Usage\n",
    "\n",
223
    "Completions API is similar to Chat Completions API, but without the `messages` parameter."
Chayenne's avatar
Chayenne committed
224
225
226
227
   ]
  },
  {
   "cell_type": "code",
228
   "execution_count": 4,
Chayenne's avatar
Chayenne committed
229
230
231
232
233
234
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
235
236
237
      "[2024-10-28 02:02:50 TP0] Prefill batch. #new-seq: 1, #new-token: 8, #cached-token: 1, cache hit rate: 21.28%, token usage: 0.00, #running-req: 0, #queue-req: 0\n",
      "[2024-10-28 02:02:51 TP0] Decode batch. #running-req: 1, #token: 37, token usage: 0.00, gen throughput (token/s): 38.07, #queue-req: 0\n",
      "[2024-10-28 02:02:52] INFO:     127.0.0.1:47910 - \"POST /v1/completions HTTP/1.1\" 200 OK\n"
Chayenne's avatar
Chayenne committed
238
     ]
239
240
241
242
243
244
245
246
247
248
249
250
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Response: Completion(id='eb486d0a32fd4384baba923f3bc17e8b', choices=[CompletionChoice(finish_reason='length', index=0, logprobs=None, text=' 1. 2. 3.\\n1.  United States - Washington D.C. 2.  Japan - Tokyo 3.  Australia - Canberra\\nList 3 countries and their capitals. 1. 2. 3.\\n1.  China - Beijing 2.  Brazil - Bras', matched_stop=None)], created=1730106172, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='text_completion', system_fingerprint=None, usage=CompletionUsage(completion_tokens=64, prompt_tokens=9, total_tokens=73, prompt_tokens_details=None))</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
Chayenne's avatar
Chayenne committed
251
252
253
254
255
256
257
258
259
260
261
    }
   ],
   "source": [
    "response = client.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    prompt=\"List 3 countries and their capitals.\",\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    "    n=1,\n",
    "    stop=None,\n",
    ")\n",
262
263
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
264
265
266
267
268
269
270
271
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
272
    "The completions API accepts OpenAI Completions API's parameters.  Refer to [OpenAI Completions API](https://platform.openai.com/docs/api-reference/completions/create) for more details.\n",
Chayenne's avatar
Chayenne committed
273
274
275
276
277
278
    "\n",
    "Here is an example of a detailed completions request:"
   ]
  },
  {
   "cell_type": "code",
279
   "execution_count": 5,
Chayenne's avatar
Chayenne committed
280
281
282
283
284
285
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
286
287
288
289
290
291
      "[2024-10-28 02:02:52 TP0] Prefill batch. #new-seq: 1, #new-token: 9, #cached-token: 1, cache hit rate: 20.53%, token usage: 0.00, #running-req: 0, #queue-req: 0\n",
      "[2024-10-28 02:02:52 TP0] Decode batch. #running-req: 1, #token: 15, token usage: 0.00, gen throughput (token/s): 40.91, #queue-req: 0\n",
      "[2024-10-28 02:02:53 TP0] Decode batch. #running-req: 1, #token: 55, token usage: 0.00, gen throughput (token/s): 42.13, #queue-req: 0\n",
      "[2024-10-28 02:02:54 TP0] Decode batch. #running-req: 1, #token: 95, token usage: 0.00, gen throughput (token/s): 42.10, #queue-req: 0\n",
      "[2024-10-28 02:02:55 TP0] Decode batch. #running-req: 1, #token: 135, token usage: 0.00, gen throughput (token/s): 41.94, #queue-req: 0\n",
      "[2024-10-28 02:02:55] INFO:     127.0.0.1:47910 - \"POST /v1/completions HTTP/1.1\" 200 OK\n"
Chayenne's avatar
Chayenne committed
292
     ]
293
294
295
296
297
298
299
300
301
302
303
304
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Response: Completion(id='fb23a12a15bc4137815b91d63b6fd976', choices=[CompletionChoice(finish_reason='length', index=0, logprobs=None, text=\" Here is a short story about a space explorer named Astrid.\\nAstrid had always been fascinated by the stars. As a child, she would spend hours gazing up at the night sky, dreaming of what lay beyond our small planet. Now, as a renowned space explorer, she had the chance to explore the cosmos firsthand.\\nAstrid's ship, the Aurora, was equipped with state-of-the-art technology that allowed her to traverse vast distances in a relatively short period of time. She had been traveling for weeks, and finally, she had reached her destination: a distant planet on the edge of the galaxy.\\nAs she entered the planet's atmosphere, Astrid felt a thrill of excitement. She had never seen anything like this before.\", matched_stop=None)], created=1730106175, model='meta-llama/Meta-Llama-3.1-8B-Instruct', object='text_completion', system_fingerprint=None, usage=CompletionUsage(completion_tokens=150, prompt_tokens=10, total_tokens=160, prompt_tokens_details=None))</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
Chayenne's avatar
Chayenne committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    }
   ],
   "source": [
    "response = client.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    prompt=\"Write a short story about a space explorer.\",\n",
    "    temperature=0.7,  # Moderate temperature for creative writing\n",
    "    max_tokens=150,  # Longer response for a story\n",
    "    top_p=0.9,  # Balanced diversity in word choice\n",
    "    stop=[\"\\n\\n\", \"THE END\"],  # Multiple stop sequences\n",
    "    presence_penalty=0.3,  # Encourage novel elements\n",
    "    frequency_penalty=0.3,  # Reduce repetitive phrases\n",
    "    n=1,  # Generate one completion\n",
    "    seed=123,  # For reproducible results\n",
    ")\n",
    "\n",
321
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Batches\n",
    "\n",
    "We have implemented the batches API for chat completions and completions. You can upload your requests in `jsonl` files, create a batch job, and retrieve the results when the batch job is completed (which takes longer but costs less).\n",
    "\n",
    "The batches APIs are:\n",
    "\n",
    "- `batches`\n",
    "- `batches/{batch_id}/cancel`\n",
    "- `batches/{batch_id}`\n",
    "\n",
    "Here is an example of a batch job for chat completions, completions are similar.\n"
   ]
  },
  {
   "cell_type": "code",
343
   "execution_count": 6,
Chayenne's avatar
Chayenne committed
344
345
346
347
348
349
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
350
351
352
      "[2024-10-28 02:02:55] INFO:     127.0.0.1:43330 - \"POST /v1/files HTTP/1.1\" 200 OK\n",
      "[2024-10-28 02:02:55] INFO:     127.0.0.1:43330 - \"POST /v1/batches HTTP/1.1\" 200 OK\n",
      "[2024-10-28 02:02:55 TP0] Prefill batch. #new-seq: 2, #new-token: 30, #cached-token: 50, cache hit rate: 35.06%, token usage: 0.00, #running-req: 0, #queue-req: 0\n"
Chayenne's avatar
Chayenne committed
353
     ]
354
355
356
357
358
359
360
361
362
363
364
365
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Batch job created with ID: batch_56fefd2e-0187-4c14-aa2d-110917723dde</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
Chayenne's avatar
Chayenne committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    }
   ],
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = [\n",
    "    {\n",
    "        \"custom_id\": \"request-1\",\n",
    "        \"method\": \"POST\",\n",
    "        \"url\": \"/chat/completions\",\n",
    "        \"body\": {\n",
    "            \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "            \"messages\": [\n",
    "                {\"role\": \"user\", \"content\": \"Tell me a joke about programming\"}\n",
    "            ],\n",
    "            \"max_tokens\": 50,\n",
    "        },\n",
    "    },\n",
    "    {\n",
    "        \"custom_id\": \"request-2\",\n",
    "        \"method\": \"POST\",\n",
    "        \"url\": \"/chat/completions\",\n",
    "        \"body\": {\n",
    "            \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "            \"messages\": [{\"role\": \"user\", \"content\": \"What is Python?\"}],\n",
    "            \"max_tokens\": 50,\n",
    "        },\n",
    "    },\n",
    "]\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    file_response = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_response = client.batches.create(\n",
    "    input_file_id=file_response.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
415
    "print_highlight(f\"Batch job created with ID: {batch_response.id}\")"
Chayenne's avatar
Chayenne committed
416
417
418
419
   ]
  },
  {
   "cell_type": "code",
420
   "execution_count": 7,
Chayenne's avatar
Chayenne committed
421
422
423
424
425
426
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
427
      "[2024-10-28 02:02:56 TP0] Decode batch. #running-req: 2, #token: 82, token usage: 0.00, gen throughput (token/s): 55.10, #queue-req: 0\n",
Chayenne's avatar
Chayenne committed
428
      "Batch job status: validating...trying again in 3 seconds...\n",
429
      "[2024-10-28 02:02:58] INFO:     127.0.0.1:43330 - \"GET /v1/batches/batch_56fefd2e-0187-4c14-aa2d-110917723dde HTTP/1.1\" 200 OK\n",
Chayenne's avatar
Chayenne committed
430
431
      "Batch job completed successfully!\n",
      "Request counts: BatchRequestCounts(completed=2, failed=0, total=2)\n",
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
      "[2024-10-28 02:02:58] INFO:     127.0.0.1:43330 - \"GET /v1/files/backend_result_file-520da6c8-0cce-4d4c-a943-a86101f5f5b4/content HTTP/1.1\" 200 OK\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Request request-1:</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Response: {'status_code': 200, 'request_id': 'request-1', 'body': {'id': 'request-1', 'object': 'chat.completion', 'created': 1730106176, 'model': 'meta-llama/Meta-Llama-3.1-8B-Instruct', 'choices': {'index': 0, 'message': {'role': 'assistant', 'content': 'A programmer walks into a library and asks the librarian, \"Do you have any books on Pavlov\\'s dogs and Schrödinger\\'s cat?\"\\n\\nThe librarian replies, \"It rings a bell, but I\\'m not sure if it\\'s here'}, 'logprobs': None, 'finish_reason': 'length', 'matched_stop': None}, 'usage': {'prompt_tokens': 41, 'completion_tokens': 50, 'total_tokens': 91}, 'system_fingerprint': None}}</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Request request-2:</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Response: {'status_code': 200, 'request_id': 'request-2', 'body': {'id': 'request-2', 'object': 'chat.completion', 'created': 1730106176, 'model': 'meta-llama/Meta-Llama-3.1-8B-Instruct', 'choices': {'index': 0, 'message': {'role': 'assistant', 'content': '**What is Python?**\\n\\nPython is a high-level, interpreted programming language that is widely used for various purposes, including:\\n\\n1. **Web Development**: Building web applications and web services using frameworks like Django and Flask.\\n2. **Data Analysis and'}, 'logprobs': None, 'finish_reason': 'length', 'matched_stop': None}, 'usage': {'prompt_tokens': 39, 'completion_tokens': 50, 'total_tokens': 89}, 'system_fingerprint': None}}</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Cleaning up files...</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-28 02:02:58] INFO:     127.0.0.1:43330 - \"DELETE /v1/files/backend_result_file-520da6c8-0cce-4d4c-a943-a86101f5f5b4 HTTP/1.1\" 200 OK\n"
Chayenne's avatar
Chayenne committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
     ]
    }
   ],
   "source": [
    "while batch_response.status not in [\"completed\", \"failed\", \"cancelled\"]:\n",
    "    time.sleep(3)\n",
    "    print(f\"Batch job status: {batch_response.status}...trying again in 3 seconds...\")\n",
    "    batch_response = client.batches.retrieve(batch_response.id)\n",
    "\n",
    "if batch_response.status == \"completed\":\n",
    "    print(\"Batch job completed successfully!\")\n",
    "    print(f\"Request counts: {batch_response.request_counts}\")\n",
    "\n",
    "    result_file_id = batch_response.output_file_id\n",
    "    file_response = client.files.content(result_file_id)\n",
    "    result_content = file_response.read().decode(\"utf-8\")\n",
    "\n",
    "    results = [\n",
    "        json.loads(line) for line in result_content.split(\"\\n\") if line.strip() != \"\"\n",
    "    ]\n",
    "\n",
    "    for result in results:\n",
522
523
    "        print_highlight(f\"Request {result['custom_id']}:\")\n",
    "        print_highlight(f\"Response: {result['response']}\")\n",
Chayenne's avatar
Chayenne committed
524
    "\n",
525
    "    print_highlight(\"Cleaning up files...\")\n",
Chayenne's avatar
Chayenne committed
526
527
528
    "    # Only delete the result file ID since file_response is just content\n",
    "    client.files.delete(result_file_id)\n",
    "else:\n",
529
    "    print_highlight(f\"Batch job failed with status: {batch_response.status}\")\n",
Chayenne's avatar
Chayenne committed
530
    "    if hasattr(batch_response, \"errors\"):\n",
531
    "        print_highlight(f\"Errors: {batch_response.errors}\")"
Chayenne's avatar
Chayenne committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It takes a while to complete the batch job. You can use these two APIs to retrieve the batch job status or cancel the batch job.\n",
    "\n",
    "1. `batches/{batch_id}`: Retrieve the batch job status.\n",
    "2. `batches/{batch_id}/cancel`: Cancel the batch job.\n",
    "\n",
    "Here is an example to check the batch job status."
   ]
  },
  {
   "cell_type": "code",
548
   "execution_count": 8,
Chayenne's avatar
Chayenne committed
549
550
551
552
553
554
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
555
556
      "[2024-10-28 02:02:58] INFO:     127.0.0.1:43336 - \"POST /v1/files HTTP/1.1\" 200 OK\n",
      "[2024-10-28 02:02:58] INFO:     127.0.0.1:43336 - \"POST /v1/batches HTTP/1.1\" 200 OK\n"
Chayenne's avatar
Chayenne committed
557
     ]
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Created batch job with ID: batch_67da0e16-e7b2-4a75-9f7a-58c033e739e5</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Initial status: validating</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-28 02:02:58 TP0] Prefill batch. #new-seq: 17, #new-token: 510, #cached-token: 425, cache hit rate: 43.40%, token usage: 0.00, #running-req: 0, #queue-req: 0\n",
      "[2024-10-28 02:02:58 TP0] Prefill batch. #new-seq: 83, #new-token: 2490, #cached-token: 2075, cache hit rate: 45.04%, token usage: 0.00, #running-req: 17, #queue-req: 0\n",
      "[2024-10-28 02:02:59 TP0] Decode batch. #running-req: 100, #token: 3725, token usage: 0.02, gen throughput (token/s): 234.43, #queue-req: 0\n",
      "[2024-10-28 02:03:00 TP0] Decode batch. #running-req: 100, #token: 7725, token usage: 0.04, gen throughput (token/s): 3545.41, #queue-req: 0\n",
      "[2024-10-28 02:03:01 TP0] Decode batch. #running-req: 100, #token: 11725, token usage: 0.05, gen throughput (token/s): 3448.10, #queue-req: 0\n",
      "[2024-10-28 02:03:02 TP0] Decode batch. #running-req: 100, #token: 15725, token usage: 0.07, gen throughput (token/s): 3362.62, #queue-req: 0\n",
      "[2024-10-28 02:03:04 TP0] Decode batch. #running-req: 100, #token: 19725, token usage: 0.09, gen throughput (token/s): 3279.58, #queue-req: 0\n",
      "[2024-10-28 02:03:05 TP0] Decode batch. #running-req: 100, #token: 23725, token usage: 0.11, gen throughput (token/s): 3200.86, #queue-req: 0\n",
      "[2024-10-28 02:03:06 TP0] Decode batch. #running-req: 100, #token: 27725, token usage: 0.13, gen throughput (token/s): 3126.52, #queue-req: 0\n",
      "[2024-10-28 02:03:07 TP0] Decode batch. #running-req: 100, #token: 31725, token usage: 0.15, gen throughput (token/s): 3053.16, #queue-req: 0\n",
      "[2024-10-28 02:03:08] INFO:     127.0.0.1:41320 - \"GET /v1/batches/batch_67da0e16-e7b2-4a75-9f7a-58c033e739e5 HTTP/1.1\" 200 OK\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Batch job details (check 1 / 5) // ID: batch_67da0e16-e7b2-4a75-9f7a-58c033e739e5 // Status: in_progress // Created at: 1730106178 // Input file ID: backend_input_file-92cf2cc1-afbd-428f-8c5c-85fabd86cb63 // Output file ID: None</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'><strong>Request counts: Total: 0 // Completed: 0 // Failed: 0</strong></strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-28 02:03:09 TP0] Decode batch. #running-req: 100, #token: 35725, token usage: 0.16, gen throughput (token/s): 2980.26, #queue-req: 0\n",
      "[2024-10-28 02:03:10 TP0] Decode batch. #running-req: 100, #token: 39725, token usage: 0.18, gen throughput (token/s): 2919.09, #queue-req: 0\n",
      "[2024-10-28 02:03:11] INFO:     127.0.0.1:41320 - \"GET /v1/batches/batch_67da0e16-e7b2-4a75-9f7a-58c033e739e5 HTTP/1.1\" 200 OK\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Batch job details (check 2 / 5) // ID: batch_67da0e16-e7b2-4a75-9f7a-58c033e739e5 // Status: in_progress // Created at: 1730106178 // Input file ID: backend_input_file-92cf2cc1-afbd-428f-8c5c-85fabd86cb63 // Output file ID: None</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'><strong>Request counts: Total: 0 // Completed: 0 // Failed: 0</strong></strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-28 02:03:11 TP0] Decode batch. #running-req: 100, #token: 43725, token usage: 0.20, gen throughput (token/s): 2854.92, #queue-req: 0\n",
      "[2024-10-28 02:03:13 TP0] Decode batch. #running-req: 100, #token: 47725, token usage: 0.22, gen throughput (token/s): 2794.62, #queue-req: 0\n",
      "[2024-10-28 02:03:14] INFO:     127.0.0.1:41320 - \"GET /v1/batches/batch_67da0e16-e7b2-4a75-9f7a-58c033e739e5 HTTP/1.1\" 200 OK\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Batch job details (check 3 / 5) // ID: batch_67da0e16-e7b2-4a75-9f7a-58c033e739e5 // Status: in_progress // Created at: 1730106178 // Input file ID: backend_input_file-92cf2cc1-afbd-428f-8c5c-85fabd86cb63 // Output file ID: None</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'><strong>Request counts: Total: 0 // Completed: 0 // Failed: 0</strong></strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-28 02:03:14 TP0] Decode batch. #running-req: 100, #token: 51725, token usage: 0.24, gen throughput (token/s): 2737.84, #queue-req: 0\n",
      "[2024-10-28 02:03:17] INFO:     127.0.0.1:41320 - \"GET /v1/batches/batch_67da0e16-e7b2-4a75-9f7a-58c033e739e5 HTTP/1.1\" 200 OK\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Batch job details (check 4 / 5) // ID: batch_67da0e16-e7b2-4a75-9f7a-58c033e739e5 // Status: completed // Created at: 1730106178 // Input file ID: backend_input_file-92cf2cc1-afbd-428f-8c5c-85fabd86cb63 // Output file ID: backend_result_file-c10ee9f5-eca8-4357-a922-934543b7f433</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'><strong>Request counts: Total: 100 // Completed: 100 // Failed: 0</strong></strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-28 02:03:20] INFO:     127.0.0.1:41320 - \"GET /v1/batches/batch_67da0e16-e7b2-4a75-9f7a-58c033e739e5 HTTP/1.1\" 200 OK\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Batch job details (check 5 / 5) // ID: batch_67da0e16-e7b2-4a75-9f7a-58c033e739e5 // Status: completed // Created at: 1730106178 // Input file ID: backend_input_file-92cf2cc1-afbd-428f-8c5c-85fabd86cb63 // Output file ID: backend_result_file-c10ee9f5-eca8-4357-a922-934543b7f433</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'><strong>Request counts: Total: 100 // Completed: 100 // Failed: 0</strong></strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
Chayenne's avatar
Chayenne committed
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
    }
   ],
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = []\n",
    "for i in range(100):\n",
    "    requests.append(\n",
    "        {\n",
    "            \"custom_id\": f\"request-{i}\",\n",
    "            \"method\": \"POST\",\n",
    "            \"url\": \"/chat/completions\",\n",
    "            \"body\": {\n",
    "                \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "                \"messages\": [\n",
    "                    {\n",
    "                        \"role\": \"system\",\n",
    "                        \"content\": f\"{i}: You are a helpful AI assistant\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": \"Write a detailed story about topic. Make it very long.\",\n",
    "                    },\n",
    "                ],\n",
    "                \"max_tokens\": 500,\n",
    "            },\n",
    "        }\n",
    "    )\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    uploaded_file = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_job = client.batches.create(\n",
    "    input_file_id=uploaded_file.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
799
800
    "print_highlight(f\"Created batch job with ID: {batch_job.id}\")\n",
    "print_highlight(f\"Initial status: {batch_job.status}\")\n",
Chayenne's avatar
Chayenne committed
801
802
803
804
805
806
    "\n",
    "time.sleep(10)\n",
    "\n",
    "max_checks = 5\n",
    "for i in range(max_checks):\n",
    "    batch_details = client.batches.retrieve(batch_id=batch_job.id)\n",
807
808
809
810
811
812
813
    "\n",
    "    print_highlight(\n",
    "        f\"Batch job details (check {i+1} / {max_checks}) // ID: {batch_details.id} // Status: {batch_details.status} // Created at: {batch_details.created_at} // Input file ID: {batch_details.input_file_id} // Output file ID: {batch_details.output_file_id}\"\n",
    "    )\n",
    "    print_highlight(\n",
    "        f\"<strong>Request counts: Total: {batch_details.request_counts.total} // Completed: {batch_details.request_counts.completed} // Failed: {batch_details.request_counts.failed}</strong>\"\n",
    "    )\n",
Chayenne's avatar
Chayenne committed
814
815
816
817
818
819
820
821
822
823
824
825
826
    "\n",
    "    time.sleep(3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is an example to cancel a batch job."
   ]
  },
  {
   "cell_type": "code",
827
   "execution_count": 9,
Chayenne's avatar
Chayenne committed
828
829
830
831
832
833
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
      "[2024-10-28 02:03:23] INFO:     127.0.0.1:47360 - \"POST /v1/files HTTP/1.1\" 200 OK\n",
      "[2024-10-28 02:03:23] INFO:     127.0.0.1:47360 - \"POST /v1/batches HTTP/1.1\" 200 OK\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Created batch job with ID: batch_8a409f86-b8c7-4e29-9cc7-187d6d28df62</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Initial status: validating</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-28 02:03:23 TP0] Prefill batch. #new-seq: 44, #new-token: 44, #cached-token: 2376, cache hit rate: 60.81%, token usage: 0.01, #running-req: 0, #queue-req: 0\n",
      "[2024-10-28 02:03:23 TP0] Prefill batch. #new-seq: 328, #new-token: 8192, #cached-token: 9824, cache hit rate: 56.49%, token usage: 0.01, #running-req: 44, #queue-req: 128\n",
      "[2024-10-28 02:03:24 TP0] Prefill batch. #new-seq: 129, #new-token: 3864, #cached-token: 3231, cache hit rate: 54.15%, token usage: 0.05, #running-req: 371, #queue-req: 1\n",
      "[2024-10-28 02:03:27 TP0] Decode batch. #running-req: 500, #token: 29025, token usage: 0.13, gen throughput (token/s): 1162.55, #queue-req: 0\n",
      "[2024-10-28 02:03:31 TP0] Decode batch. #running-req: 500, #token: 49025, token usage: 0.23, gen throughput (token/s): 5606.35, #queue-req: 0\n",
      "[2024-10-28 02:03:33] INFO:     127.0.0.1:40110 - \"POST /v1/batches/batch_8a409f86-b8c7-4e29-9cc7-187d6d28df62/cancel HTTP/1.1\" 200 OK\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Cancellation initiated. Status: cancelling</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-28 02:03:36] INFO:     127.0.0.1:40110 - \"GET /v1/batches/batch_8a409f86-b8c7-4e29-9cc7-187d6d28df62 HTTP/1.1\" 200 OK\n"
Chayenne's avatar
Chayenne committed
891
     ]
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Current status: cancelled</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Batch job successfully cancelled</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-28 02:03:36] INFO:     127.0.0.1:40110 - \"DELETE /v1/files/backend_input_file-2e9608b6-981b-48ec-8adb-e653ffc69106 HTTP/1.1\" 200 OK\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Successfully cleaned up input file</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
Chayenne's avatar
Chayenne committed
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
    }
   ],
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = []\n",
    "for i in range(500):\n",
    "    requests.append(\n",
    "        {\n",
    "            \"custom_id\": f\"request-{i}\",\n",
    "            \"method\": \"POST\",\n",
    "            \"url\": \"/chat/completions\",\n",
    "            \"body\": {\n",
    "                \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "                \"messages\": [\n",
    "                    {\n",
    "                        \"role\": \"system\",\n",
    "                        \"content\": f\"{i}: You are a helpful AI assistant\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": \"Write a detailed story about topic. Make it very long.\",\n",
    "                    },\n",
    "                ],\n",
    "                \"max_tokens\": 500,\n",
    "            },\n",
    "        }\n",
    "    )\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    uploaded_file = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_job = client.batches.create(\n",
    "    input_file_id=uploaded_file.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
982
983
    "print_highlight(f\"Created batch job with ID: {batch_job.id}\")\n",
    "print_highlight(f\"Initial status: {batch_job.status}\")\n",
Chayenne's avatar
Chayenne committed
984
985
986
987
988
    "\n",
    "time.sleep(10)\n",
    "\n",
    "try:\n",
    "    cancelled_job = client.batches.cancel(batch_id=batch_job.id)\n",
989
    "    print_highlight(f\"Cancellation initiated. Status: {cancelled_job.status}\")\n",
Chayenne's avatar
Chayenne committed
990
991
992
993
994
995
    "    assert cancelled_job.status == \"cancelling\"\n",
    "\n",
    "    # Monitor the cancellation process\n",
    "    while cancelled_job.status not in [\"failed\", \"cancelled\"]:\n",
    "        time.sleep(3)\n",
    "        cancelled_job = client.batches.retrieve(batch_job.id)\n",
996
    "        print_highlight(f\"Current status: {cancelled_job.status}\")\n",
Chayenne's avatar
Chayenne committed
997
998
999
    "\n",
    "    # Verify final status\n",
    "    assert cancelled_job.status == \"cancelled\"\n",
1000
    "    print_highlight(\"Batch job successfully cancelled\")\n",
Chayenne's avatar
Chayenne committed
1001
1002
    "\n",
    "except Exception as e:\n",
1003
    "    print_highlight(f\"Error during cancellation: {e}\")\n",
Chayenne's avatar
Chayenne committed
1004
1005
1006
1007
1008
1009
    "    raise e\n",
    "\n",
    "finally:\n",
    "    try:\n",
    "        del_response = client.files.delete(uploaded_file.id)\n",
    "        if del_response.deleted:\n",
1010
    "            print_highlight(\"Successfully cleaned up input file\")\n",
Chayenne's avatar
Chayenne committed
1011
    "    except Exception as e:\n",
1012
    "        print_highlight(f\"Error cleaning up: {e}\")\n",
Chayenne's avatar
Chayenne committed
1013
1014
1015
1016
1017
    "        raise e"
   ]
  },
  {
   "cell_type": "code",
1018
   "execution_count": 10,
Chayenne's avatar
Chayenne committed
1019
   "metadata": {},
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-28 02:03:36] INFO:     Shutting down\n",
      "[2024-10-28 02:03:36] INFO:     Waiting for application shutdown.\n",
      "[2024-10-28 02:03:36] INFO:     Application shutdown complete.\n",
      "[2024-10-28 02:03:36] INFO:     Finished server process [1185529]\n",
      "W1028 02:03:37.084000 140231994889792 torch/_inductor/compile_worker/subproc_pool.py:126] SubprocPool unclean exit\n"
     ]
    }
   ],
Chayenne's avatar
Chayenne committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
   "source": [
    "terminate_process(server_process)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "AlphaMeemory",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}