test_gptqmodel_dynamic.py 6.94 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import time
import unittest

import requests
import torch

from sglang.srt.utils import kill_process_tree
from sglang.test.test_utils import (
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    popen_launch_server,
)


def check_quant_method(model_path: str, use_marlin_kernel: bool):
    from sglang.srt.configs.device_config import DeviceConfig
    from sglang.srt.configs.load_config import LoadConfig
    from sglang.srt.configs.model_config import AttentionArch, ModelConfig
    from sglang.srt.distributed import (
        get_tp_group,
        init_distributed_environment,
        initialize_model_parallel,
        set_custom_all_reduce,
    )
    from sglang.srt.distributed.parallel_state import monkey_patch_vllm_parallel_state
    from sglang.srt.layers.quantization import get_dynamic_override
    from sglang.srt.model_loader import get_model
    from sglang.srt.server_args import PortArgs, ServerArgs

    try:
        init_distributed_environment(
            backend="nccl",
            world_size=1,
            rank=0,
            local_rank=0,
            distributed_init_method="tcp://127.0.0.1:2646",
        )
        initialize_model_parallel(tensor_model_parallel_size=1)
        monkey_patch_vllm_parallel_state()
    except AssertionError:
        # ignore this error: tensor model parallel group is already initialized
        pass

    server_args = ServerArgs(model_path=model_path, dtype=torch.float16)
    model_config = ModelConfig(
        server_args.model_path,
        trust_remote_code=server_args.trust_remote_code,
        revision=server_args.revision,
        context_length=server_args.context_length,
        model_override_args=server_args.json_model_override_args,
        is_embedding=server_args.is_embedding,
        dtype=server_args.dtype,
        quantization=server_args.quantization,
    )

    load_config = LoadConfig()
    device_config = DeviceConfig("cuda")
    model = get_model(
        model_config=model_config, load_config=load_config, device_config=device_config
    )

    from vllm.model_executor.layers.quantization.gptq import GPTQLinearMethod
    from vllm.model_executor.layers.quantization.gptq_marlin import (
        GPTQMarlinLinearMethod,
    )

    from sglang.srt.layers.linear import UnquantizedLinearMethod

    linear_method_cls = (
        GPTQMarlinLinearMethod if use_marlin_kernel else (GPTQLinearMethod)
    )

    for name, submodule in model.named_modules():
        if name == "lm_head":
            assert isinstance(submodule.quant_method, linear_method_cls)
        elif name == "model.layers.0.self_attn.qkv_proj":
            # The first layer is quantized using bits=4, group_size=128
            # desc_act=True
            assert isinstance(submodule.quant_method, linear_method_cls)
            config = submodule.quant_method.quant_config
            assert config.weight_bits == 4
            assert config.group_size == 128
            assert config.desc_act
        elif name == "model.layers.1.self_attn.qkv_proj":
            # The second layer is quantized using bits=8, group_size=32
            # desc_act=False
            assert isinstance(submodule.quant_method, linear_method_cls)
            config = submodule.quant_method.quant_config
            assert get_dynamic_override(config, layer_name=name, key="bits") == 8
            assert get_dynamic_override(config, layer_name=name, key="group_size") == 32
            assert not get_dynamic_override(config, layer_name=name, key="desc_act")
        elif (
            name == "model.layers.2.self_attn.qkv_proj"
            or name == "model.layers.2.mlp.gate_up_proj"
        ):
            # All other layers (layer index >= 2) are not quantized
            assert isinstance(submodule.quant_method, UnquantizedLinearMethod)

    del model


# GPTQ with Dynamic Per/Module Quantization Control
# Leverages GPTQModel (pypi) to produce the `dynamic` models
# Test GPTQ fallback kernel that is not Marlin
class TestGPTQModelDynamic(unittest.TestCase):
    MODEL_PATH = (
        "ModelCloud/Qwen1.5-1.8B-Chat-GPTQ-4bits-dynamic-cfg-with-lm_head-symFalse"
    )

    @classmethod
    def setUpClass(cls):
        cls.model = cls.MODEL_PATH
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=["--dtype", "float16"],
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def run_decode(self, max_new_tokens):
        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": "The capital of France is",
                "sampling_params": {
                    "max_new_tokens": max_new_tokens,
132
                    "temperature": 0.001,
133
134
135
136
137
138
139
140
141
142
143
144
145
146
                },
            },
        )
        return response.json()

    def test_throughput(self):
        max_tokens = 256

        tic = time.time()
        result = self.run_decode(max_tokens)
        tok = time.time()

        print(f"result = `{result}`")

147
        self.assertIn("paris", result["text"].lower())
148
149
150

        throughput = max_tokens / (tok - tic)
        print(f"Throughput: {throughput} tokens/s")
151
        self.assertGreaterEqual(throughput, 140)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

    def test_gptq_module(self):
        check_quant_method(self.MODEL_PATH, use_marlin_kernel=False)


# GPTQ with Dynamic Per/Module Quantization Control
# Leverages GPTQModel (pypi) to produce the `dynamic` models
# Test Marlin kernel
class TestGPTQModelDynamicWithMarlin(unittest.TestCase):
    MODEL_PATH = (
        "ModelCloud/Qwen1.5-1.8B-Chat-GPTQ-4bits-dynamic-cfg-with-lm_head-symTrue"
    )

    @classmethod
    def setUpClass(cls):
        cls.model = cls.MODEL_PATH
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=["--dtype", "float16"],
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def run_decode(self, max_new_tokens):
        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": "The capital of France is",
                "sampling_params": {
                    "max_new_tokens": max_new_tokens,
Lianmin Zheng's avatar
Lianmin Zheng committed
187
                    "temperature": 0.001,
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
                },
            },
        )
        return response.json()

    def test_throughput(self):
        max_tokens = 256

        tic = time.time()
        result = self.run_decode(max_tokens)
        tok = time.time()

        print(f"result = `{result}`")

        assert "paris" in result["text"].lower()

        throughput = max_tokens / (tok - tic)
        print(f"Throughput: {throughput} tokens/s")
        assert throughput >= 140

    def test_gptq_marlin_module(self):
        check_quant_method(self.MODEL_PATH, use_marlin_kernel=True)


if __name__ == "__main__":
    unittest.main()