nvfp4_expert_quant.cu 21.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda_fp8.h>
#include <cuda_runtime.h>
#include <torch/all.h>

template <typename T>
struct TypeConverter {
  using Type = half2;
};  // keep for generality

template <>
struct TypeConverter<half2> {
  using Type = half;
};

template <>
struct TypeConverter<half> {
  using Type = half2;
};

template <>
struct TypeConverter<__nv_bfloat162> {
  using Type = __nv_bfloat16;
};

template <>
struct TypeConverter<__nv_bfloat16> {
  using Type = __nv_bfloat162;
};

#define ELTS_PER_THREAD 8

constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;

// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
  // PTX instructions used here requires sm100a.
#if CUDA_VERSION >= 12080
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000) && __CUDA_ARCH_HAS_FEATURE__(SM100_ALL)
  uint32_t val;
  asm volatile(
      "{\n"
      ".reg .b8 byte0;\n"
      ".reg .b8 byte1;\n"
      ".reg .b8 byte2;\n"
      ".reg .b8 byte3;\n"
      "cvt.rn.satfinite.e2m1x2.f32   byte0, %2, %1;\n"
      "cvt.rn.satfinite.e2m1x2.f32   byte1, %4, %3;\n"
      "cvt.rn.satfinite.e2m1x2.f32   byte2, %6, %5;\n"
      "cvt.rn.satfinite.e2m1x2.f32   byte3, %8, %7;\n"
      "mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
      "}"
      : "=r"(val)
      : "f"(array[0]),
        "f"(array[1]),
        "f"(array[2]),
        "f"(array[3]),
        "f"(array[4]),
        "f"(array[5]),
        "f"(array[6]),
        "f"(array[7]));
  return val;
#else
  return 0;
#endif
#endif
}

// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
  // PTX instructions used here requires sm100a.
#if CUDA_VERSION >= 12080
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000) && __CUDA_ARCH_HAS_FEATURE__(SM100_ALL)
  uint32_t val;
  asm volatile(
      "{\n"
      ".reg .b8 byte0;\n"
      ".reg .b8 byte1;\n"
      ".reg .b8 byte2;\n"
      ".reg .b8 byte3;\n"
      "cvt.rn.satfinite.e2m1x2.f32   byte0, %2, %1;\n"
      "cvt.rn.satfinite.e2m1x2.f32   byte1, %4, %3;\n"
      "cvt.rn.satfinite.e2m1x2.f32   byte2, %6, %5;\n"
      "cvt.rn.satfinite.e2m1x2.f32   byte3, %8, %7;\n"
      "mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
      "}"
      : "=r"(val)
      : "f"(array[0].x),
        "f"(array[0].y),
        "f"(array[1].x),
        "f"(array[1].y),
        "f"(array[2].x),
        "f"(array[2].y),
        "f"(array[3].x),
        "f"(array[3].y));
  return val;
#else
  return 0;
#endif
#endif
}

// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
  float b;
  asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
  return b;
}

template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx, int numCols, SFType* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
  static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 || CVT_FP4_NUM_THREADS_PER_SF == 2);

  // One pair of threads write one SF to global memory.
  // TODO: stage through smem for packed STG.32
  // is it better than STG.8 from 4 threads ?
  if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
    // SF vector index (16 elements share one SF in the K dimension).
    int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
    int32_t mIdx = rowIdx;

    // SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
    // --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]

    int32_t mTileIdx = mIdx / (32 * 4);
    // SF vector size 16.
    int factor = CVT_FP4_SF_VEC_SIZE * 4;
    int32_t numKTiles = (numCols + factor - 1) / factor;
    int64_t mTileStride = numKTiles * 32 * 4 * 4;

    int32_t kTileIdx = (kIdx / 4);
    int64_t kTileStride = 32 * 4 * 4;

    // M tile layout [32, 4] is column-major.
    int32_t outerMIdx = (mIdx % 32);
    int64_t outerMStride = 4 * 4;

    int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
    int64_t innerMStride = 4;

    int32_t innerKIdx = (kIdx % 4);
    int64_t innerKStride = 1;

    // Compute the global offset.
    int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride + outerMIdx * outerMStride +
                       innerMIdx * innerMStride + innerKIdx * innerKStride;

    return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
  }
#endif
  return nullptr;
}

// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
  typename TypeConverter<Type>::Type elts[4];
};

template <>
struct PackedVec<__nv_fp8_e4m3> {
  __nv_fp8x2_e4m3 elts[8];
};

// Quantizes the provided PackedVec into the uint32_t output
template <class Type, bool UE8M0_SF = false>
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal, uint8_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
  // Get absolute maximum values among the local 8 values.
  auto localMax = __habs2(vec.elts[0]);

// Local maximum value.
#pragma unroll
  for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
    localMax = __hmax2(localMax, __habs2(vec.elts[i]));
  }

  // Get the absolute maximum among all 16 values (two threads).
  localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
  // Get the final absolute maximum values.
  float vecMax = float(__hmax(localMax.x, localMax.y));

  // Get the SF (max value of the vector / max value of e2m1).
  // maximum value of e2m1 = 6.0.
  // TODO: use half as compute data type.
  float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
  // 8 bits representation of the SF.
  uint8_t fp8SFVal;
  // Write the SF to global memory (STG.8).
  if constexpr (UE8M0_SF) {
    // Extract the 8 exponent bits from float32.
    // float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
    uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
    fp8SFVal = tmp & 0xff;
    // Convert back to fp32.
    reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
  } else {
    // Here SFValue is always positive, so E4M3 is the same as UE4M3.
    __nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
    reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
    // Convert back to fp32.
    SFValue = float(tmp);
  }
  // Get the output scale.
  // Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
  //                       reciprocal(SFScaleVal))
  float outputScale =
      SFValue != 0 ? reciprocal_approximate_ftz(SFValue * reciprocal_approximate_ftz(SFScaleVal)) : 0.0f;

  if (SFout) {
    // Write the SF to global memory (STG.8).
    *SFout = fp8SFVal;
  }

  // Convert the input to float.
  float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];

#pragma unroll
  for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
    if constexpr (std::is_same_v<Type, half>) {
      fp2Vals[i] = __half22float2(vec.elts[i]);
    } else {
      fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
    }
    fp2Vals[i].x *= outputScale;
    fp2Vals[i].y *= outputScale;
  }

  // Convert to e2m1 values.
  uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);

  // Write the e2m1 values to global memory.
  return e2m1Vec;
#else
  return 0;
#endif
}

// Use UE4M3 by default.
243
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
244
245
246
247
248
249
250
251
252
253
254
255
256
257
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(512, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
    int32_t numRows,
    int32_t numCols,
    Type const* in,
    float const* SFScale,
    uint32_t* out,
    uint32_t* SFout,
    uint32_t* input_offset_by_experts,
    uint32_t* output_scale_offset_by_experts,
258
259
    int n_experts,
    bool low_latency) {
260
261
262
263
264
265
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
  using PackedVec = PackedVec<Type>;
  static constexpr int CVT_FP4_NUM_THREADS_PER_SF = (CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
  static_assert(sizeof(PackedVec) == sizeof(Type) * CVT_FP4_ELTS_PER_THREAD, "Vec size is not matched.");

  // Input tensor row/col loops.
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int colsPerRow = numCols / CVT_FP4_ELTS_PER_THREAD;

  // Each global thread processes one element
  for (int globalIdx = tid; globalIdx < numRows * colsPerRow; globalIdx += gridDim.x * blockDim.x) {
    // Calculate which row and column this global thread should process
    int rowIdx = globalIdx / colsPerRow;
    int colIdx = globalIdx % colsPerRow;

    int64_t inOffset = rowIdx * colsPerRow + colIdx;
    PackedVec in_vec = reinterpret_cast<PackedVec const*>(in)[inOffset];
    // Get the output tensor offset.
    // Same as inOffset because 8 elements are packed into one uint32_t.
    int64_t outOffset = inOffset;
    auto& out_pos = out[outOffset];

    // Find index within the experts using different strategies based on expert
    // count
    int rowIdx_in_expert = 0;
    int expert_idx = 0;

    if constexpr (SMALL_NUM_EXPERTS) {
288
      for (int i = 0; i < n_experts; i++) {
289
290
291
292
        uint32_t current_offset = __ldca(&input_offset_by_experts[i]);
        uint32_t next_offset = __ldca(&input_offset_by_experts[i + 1]);
        if (rowIdx >= current_offset && rowIdx < next_offset) {
          rowIdx_in_expert = rowIdx - current_offset;
293
294
295
296
          expert_idx = i;
          break;
        }
      }
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    } else {
      // Load input offsets into registers first, then do the computation.
      // Local array size set to 17 because of register limit.
      uint32_t local_offsets[17];
      for (int chunk_start = 0; chunk_start < n_experts; chunk_start += 16) {
        *reinterpret_cast<int4*>(local_offsets) =
            __ldca(reinterpret_cast<const int4*>(&input_offset_by_experts[chunk_start]));
        *reinterpret_cast<int4*>(local_offsets + 4) =
            __ldca(reinterpret_cast<const int4*>(&input_offset_by_experts[chunk_start + 4]));
        *reinterpret_cast<int4*>(local_offsets + 8) =
            __ldca(reinterpret_cast<const int4*>(&input_offset_by_experts[chunk_start + 8]));
        *reinterpret_cast<int4*>(local_offsets + 12) =
            __ldca(reinterpret_cast<const int4*>(&input_offset_by_experts[chunk_start + 12]));
        local_offsets[16] = __ldca(&input_offset_by_experts[chunk_start + 16]);

// Check against the 16 loaded offsets
#pragma unroll
        for (int i = 0; i < 16; i++) {
          if (rowIdx >= local_offsets[i] && rowIdx < local_offsets[i + 1]) {
            rowIdx_in_expert = rowIdx - local_offsets[i];
            expert_idx = chunk_start + i;
            break;
          }
        }
      }
    }

    // Get the global scaling factor, which will be applied to the SF.
    // Note SFScale is the same as next GEMM's alpha, which is
    // (448.f / (Alpha_A / 6.f)).
    float const SFScaleVal = SFScale == nullptr ? 1.0f : SFScale[expert_idx];
328

329
330
331
332
333
    int factor = CVT_FP4_SF_VEC_SIZE * 4;
    // The actual output_scales dim is computed from the padded numCols.
    int32_t numCols_padded = (numCols + factor - 1) / factor * factor;
    int numCols_SFout = numCols_padded / CVT_FP4_SF_VEC_SIZE / 4;
    uint32_t* SFout_in_expert = SFout + output_scale_offset_by_experts[expert_idx] * numCols_SFout;
334

335
336
    auto sf_out = cvt_quant_to_fp4_get_sf_out_offset<uint32_t, CVT_FP4_NUM_THREADS_PER_SF>(
        rowIdx_in_expert, colIdx, numCols, SFout_in_expert);
337

338
339
340
341
    out_pos = cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
  }
#endif
}
342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
// Kernel for LARGE_M_TOPK = true (large m_topk optimized version)
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(1024, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
    int32_t numRows,
    int32_t numCols,
    Type const* in,
    float const* SFScale,
    uint32_t* out,
    uint32_t* SFout,
    uint32_t* input_offset_by_experts,
    uint32_t* output_scale_offset_by_experts,
    int n_experts) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
  using PackedVec = PackedVec<Type>;
  static constexpr int CVT_FP4_NUM_THREADS_PER_SF = (CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
  static_assert(sizeof(PackedVec) == sizeof(Type) * CVT_FP4_ELTS_PER_THREAD, "Vec size is not matched.");
  extern __shared__ uint32_t shared_input_offsets[];

  // Load input offsets into shared memory.
  // If n_experts is larger than 4, use vectorized int4 to save instructions.
  // If n_experts is smaller than 4, read directly.
  if constexpr (SMALL_NUM_EXPERTS) {
    for (int i = threadIdx.x; i < n_experts + 1; i += blockDim.x) {
      shared_input_offsets[i] = input_offset_by_experts[i];
    }
  } else {
    for (int i = threadIdx.x * 4; i < n_experts; i += blockDim.x * 4) {
      *reinterpret_cast<int4*>(&shared_input_offsets[i]) = *reinterpret_cast<const int4*>(&input_offset_by_experts[i]);
    }
    if (threadIdx.x == 0) {
      shared_input_offsets[n_experts] = input_offset_by_experts[n_experts];
379
380
    }
  }
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

  __syncthreads();

  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int colsPerRow = numCols / CVT_FP4_ELTS_PER_THREAD;

  // Each global thread processes one element
  for (int globalIdx = tid; globalIdx < numRows * colsPerRow; globalIdx += gridDim.x * blockDim.x) {
    // Calculate which row and column this global thread should process
    int rowIdx = globalIdx / colsPerRow;
    int colIdx = globalIdx % colsPerRow;

    int64_t inOffset = rowIdx * colsPerRow + colIdx;
    PackedVec in_vec = reinterpret_cast<PackedVec const*>(in)[inOffset];
    int64_t outOffset = inOffset;
    auto& out_pos = out[outOffset];

    // Find expert using binary search for better performance with large m_topk
    int rowIdx_in_expert = 0;
    int expert_idx = 0;

    // Binary search through experts using shared memory
    int left = 0, right = n_experts - 1;
    while (left <= right) {
      int mid = (left + right) / 2;
      // Get offsets: shared_input_offsets[i] corresponds to
      // input_offset_by_experts[i]
      uint32_t mid_offset = shared_input_offsets[mid];
      uint32_t next_offset = shared_input_offsets[mid + 1];

      if (rowIdx >= mid_offset && rowIdx < next_offset) {
        rowIdx_in_expert = rowIdx - mid_offset;
        expert_idx = mid;
        break;
      } else if (rowIdx < mid_offset) {
        right = mid - 1;
      } else {
        left = mid + 1;
      }
    }

    float const SFScaleVal = SFScale == nullptr ? 1.0f : SFScale[expert_idx];

    int factor = CVT_FP4_SF_VEC_SIZE * 4;
    int32_t numCols_padded = (numCols + factor - 1) / factor * factor;
    int numCols_SFout = numCols_padded / CVT_FP4_SF_VEC_SIZE / 4;
    uint32_t* SFout_in_expert = SFout + output_scale_offset_by_experts[expert_idx] * numCols_SFout;

    auto sf_out = cvt_quant_to_fp4_get_sf_out_offset<uint32_t, CVT_FP4_NUM_THREADS_PER_SF>(
        rowIdx_in_expert, colIdx, numCols, SFout_in_expert);

    out_pos = cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
  }
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#endif
}

template <typename T>
void quant_impl(
    void* output,
    void* output_scale,
    void* input,
    void* input_global_scale,
    void* input_offset_by_experts,
    void* output_scale_offset_by_experts,
    int m_topk,
    int k,
    int n_experts,
    cudaStream_t stream) {
  // TODO: this multiProcessorCount should be cached.
  int device;
  cudaGetDevice(&device);
  int multiProcessorCount;
  cudaDeviceGetAttribute(&multiProcessorCount, cudaDevAttrMultiProcessorCount, device);

  // Grid, Block size.
  // Each thread converts 8 values.
457
458
459
  int const workSizePerRow = k / ELTS_PER_THREAD;
  int const totalWorkSize = m_topk * workSizePerRow;
  dim3 block(std::min(workSizePerRow, 512));
460
461
  // Get number of blocks per SM (assume we can fully utilize the SM).
  int const numBlocksPerSM = 2048 / block.x;
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
  dim3 grid(std::min(static_cast<int>((totalWorkSize + block.x - 1) / block.x), multiProcessorCount * numBlocksPerSM));
  while (grid.x <= multiProcessorCount && block.x > 64) {
    grid.x *= 2;
    block.x = (block.x + 1) / 2;
  }

  int const blockRepeat = (totalWorkSize + block.x * grid.x - 1) / (block.x * grid.x);
  if (blockRepeat > 1) {
    size_t shared_mem_size = (n_experts + 1) * sizeof(uint32_t);
    if (n_experts >= 4) {
      cvt_fp16_to_fp4<T, false, false><<<grid, block, shared_mem_size, stream>>>(
          m_topk,
          k,
          reinterpret_cast<T*>(input),
          reinterpret_cast<float*>(input_global_scale),
          reinterpret_cast<uint32_t*>(output),
          reinterpret_cast<uint32_t*>(output_scale),
          reinterpret_cast<uint32_t*>(input_offset_by_experts),
          reinterpret_cast<uint32_t*>(output_scale_offset_by_experts),
          n_experts);
    } else {
      cvt_fp16_to_fp4<T, false, true><<<grid, block, shared_mem_size, stream>>>(
          m_topk,
          k,
          reinterpret_cast<T*>(input),
          reinterpret_cast<float*>(input_global_scale),
          reinterpret_cast<uint32_t*>(output),
          reinterpret_cast<uint32_t*>(output_scale),
          reinterpret_cast<uint32_t*>(input_offset_by_experts),
          reinterpret_cast<uint32_t*>(output_scale_offset_by_experts),
          n_experts);
    }
  } else {
    if (n_experts >= 16) {
      cvt_fp16_to_fp4<T, false, false><<<grid, block, 0, stream>>>(
          m_topk,
          k,
          reinterpret_cast<T*>(input),
          reinterpret_cast<float*>(input_global_scale),
          reinterpret_cast<uint32_t*>(output),
          reinterpret_cast<uint32_t*>(output_scale),
          reinterpret_cast<uint32_t*>(input_offset_by_experts),
          reinterpret_cast<uint32_t*>(output_scale_offset_by_experts),
          n_experts,
          /* bool low_latency */ true);
    } else {
      cvt_fp16_to_fp4<T, false, true><<<grid, block, 0, stream>>>(
          m_topk,
          k,
          reinterpret_cast<T*>(input),
          reinterpret_cast<float*>(input_global_scale),
          reinterpret_cast<uint32_t*>(output),
          reinterpret_cast<uint32_t*>(output_scale),
          reinterpret_cast<uint32_t*>(input_offset_by_experts),
          reinterpret_cast<uint32_t*>(output_scale_offset_by_experts),
          n_experts,
          /* bool low_latency */ true);
    }
  }
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
}

/*Quantization entry for fp4 experts quantization*/
#define CHECK_TH_CUDA(x, m) TORCH_CHECK(x.is_cuda(), m, "must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x, m) TORCH_CHECK(x.is_contiguous(), m, "must be contiguous")
#define CHECK_INPUT(x, m) \
  CHECK_TH_CUDA(x, m);    \
  CHECK_CONTIGUOUS(x, m);

// constexpr auto FP8 = at::ScalarType::Float8_e4m3fn;
constexpr auto HALF = at::ScalarType::Half;
constexpr auto BF16 = at::ScalarType::BFloat16;
constexpr auto FLOAT = at::ScalarType::Float;
constexpr auto INT = at::ScalarType::Int;
constexpr auto UINT8 = at::ScalarType::Byte;

void scaled_fp4_experts_quant_sm100a(
    torch::Tensor& output,
    torch::Tensor& output_scale,
    torch::Tensor const& input,
    torch::Tensor const& input_global_scale,
    torch::Tensor const& input_offset_by_experts,
    torch::Tensor const& output_scale_offset_by_experts) {
  CHECK_INPUT(output, "output must be a CUDA tensor");
  CHECK_INPUT(output_scale, "output_scale must be a CUDA tensor");
  CHECK_INPUT(input, "input must be a CUDA tensor");
  CHECK_INPUT(input_global_scale, "input_global_scale must be a CUDA tensor");
  CHECK_INPUT(input_offset_by_experts, "input_offset_by_experts must be a CUDA tensor");
  CHECK_INPUT(output_scale_offset_by_experts, "output_scale_offset_by_experts must be a CUDA tensor");

  TORCH_CHECK(output.dim() == 2);
  TORCH_CHECK(output_scale.dim() == 2);
  TORCH_CHECK(input.dim() == 2);
  TORCH_CHECK(input_global_scale.dim() == 1);
  TORCH_CHECK(input_offset_by_experts.dim() == 1);
  TORCH_CHECK(output_scale_offset_by_experts.dim() == 1);

  TORCH_CHECK(input.scalar_type() == HALF || input.scalar_type() == BF16);
  TORCH_CHECK(input_global_scale.scalar_type() == FLOAT);
  TORCH_CHECK(input_offset_by_experts.scalar_type() == INT);
  TORCH_CHECK(output_scale_offset_by_experts.scalar_type() == INT);
  // output is uint8 (two nvfp4 values are packed into one uint8)
  // output_scale is int32 (four fp8 values are packed into one int32)
  TORCH_CHECK(output.scalar_type() == UINT8);
  TORCH_CHECK(output_scale.scalar_type() == INT);

  const int BLOCK_SIZE = 16;
  auto m_topk = input.size(0);
  auto k = input.size(1);
  TORCH_CHECK(k % BLOCK_SIZE == 0, "k must be a multiple of 16");
  auto n_experts = input_global_scale.size(0);
  TORCH_CHECK(input_offset_by_experts.size(0) == n_experts + 1);
  TORCH_CHECK(output_scale_offset_by_experts.size(0) == n_experts + 1);
  TORCH_CHECK(output.size(0) == m_topk);
  TORCH_CHECK(output.size(1) == k / 2);
  int scales_k = k / BLOCK_SIZE;
  // 4 means the swizzle requirement by nvidia nvfp4.
  int padded_k = (scales_k + (4 - 1)) / 4 * 4;
  // 4 means 4 fp8 values are packed into one int32
  TORCH_CHECK(output_scale.size(1) * 4 == padded_k);

  auto in_dtype = input.dtype();
  at::cuda::CUDAGuard device_guard{(char)input.get_device()};
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream(input.get_device());
  if (in_dtype == at::ScalarType::Half) {
    quant_impl<half>(
        output.data_ptr(),
        output_scale.data_ptr(),
        input.data_ptr(),
        input_global_scale.data_ptr(),
        input_offset_by_experts.data_ptr(),
        output_scale_offset_by_experts.data_ptr(),
        m_topk,
        k,
        n_experts,
        stream);
  } else if (in_dtype == at::ScalarType::BFloat16) {
    quant_impl<__nv_bfloat16>(
        output.data_ptr(),
        output_scale.data_ptr(),
        input.data_ptr(),
        input_global_scale.data_ptr(),
        input_offset_by_experts.data_ptr(),
        output_scale_offset_by_experts.data_ptr(),
        m_topk,
        k,
        n_experts,
        stream);
  } else {
    TORCH_CHECK(false, "Expected input data type to be half or bfloat16");
  }
}