router.rs 44.6 KB
Newer Older
1
2
//! OpenAI router - main coordinator that delegates to specialized modules

3
4
5
use std::{
    any::Any,
    sync::{atomic::AtomicBool, Arc},
6
    time::{Duration, Instant},
7
};
8

9
10
11
12
13
14
15
use axum::{
    body::Body,
    extract::Request,
    http::{header::CONTENT_TYPE, HeaderMap, HeaderValue, StatusCode},
    response::{IntoResponse, Response},
    Json,
};
16
use dashmap::DashMap;
17
18
19
20
use futures_util::StreamExt;
use serde_json::{json, to_value, Value};
use tokio::sync::mpsc;
use tokio_stream::wrappers::UnboundedReceiverStream;
21
use tracing::warn;
22
23
24

// Import from sibling modules
use super::conversations::{
25
26
27
    create_conversation, create_conversation_items, delete_conversation, delete_conversation_item,
    get_conversation, get_conversation_item, list_conversation_items, persist_conversation_items,
    update_conversation,
28
};
29
30
31
32
33
34
35
use super::{
    mcp::{
        execute_tool_loop, mcp_manager_from_request_tools, prepare_mcp_payload_for_streaming,
        McpLoopConfig,
    },
    responses::{mask_tools_as_mcp, patch_streaming_response_json},
    streaming::handle_streaming_response,
36
    utils::{apply_provider_headers, extract_auth_header, probe_endpoint_for_model},
37
38
39
40
41
};
use crate::{
    config::CircuitBreakerConfig,
    core::{CircuitBreaker, CircuitBreakerConfig as CoreCircuitBreakerConfig},
    data_connector::{
42
43
        ConversationId, ListParams, ResponseId, SharedConversationItemStorage,
        SharedConversationStorage, SharedResponseStorage, SortOrder,
44
45
46
    },
    protocols::{
        chat::ChatCompletionRequest,
47
        classify::ClassifyRequest,
48
49
50
51
52
53
54
55
56
57
        completion::CompletionRequest,
        embedding::EmbeddingRequest,
        generate::GenerateRequest,
        rerank::RerankRequest,
        responses::{
            ResponseContentPart, ResponseInput, ResponseInputOutputItem, ResponsesGetParams,
            ResponsesRequest,
        },
    },
    routers::header_utils::apply_request_headers,
58
59
60
61
62
63
};

// ============================================================================
// OpenAIRouter Struct
// ============================================================================

64
65
66
67
68
69
70
/// Cached endpoint information
#[derive(Clone, Debug)]
struct CachedEndpoint {
    url: String,
    cached_at: Instant,
}

71
72
73
74
/// Router for OpenAI backend
pub struct OpenAIRouter {
    /// HTTP client for upstream OpenAI-compatible API
    client: reqwest::Client,
75
76
77
78
    /// Multiple OpenAI-compatible API endpoints (OpenAI, xAI, etc.)
    worker_urls: Vec<String>,
    /// Model cache: model_id -> endpoint URL
    model_cache: Arc<DashMap<String, CachedEndpoint>>,
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    /// Circuit breaker
    circuit_breaker: CircuitBreaker,
    /// Health status
    healthy: AtomicBool,
    /// Response storage for managing conversation history
    response_storage: SharedResponseStorage,
    /// Conversation storage backend
    conversation_storage: SharedConversationStorage,
    /// Conversation item storage backend
    conversation_item_storage: SharedConversationItemStorage,
    /// Optional MCP manager (enabled via config presence)
    mcp_manager: Option<Arc<crate::mcp::McpClientManager>>,
}

impl std::fmt::Debug for OpenAIRouter {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("OpenAIRouter")
96
            .field("worker_urls", &self.worker_urls)
97
98
99
100
101
102
103
104
105
            .field("healthy", &self.healthy)
            .finish()
    }
}

impl OpenAIRouter {
    /// Maximum number of conversation items to attach as input when a conversation is provided
    const MAX_CONVERSATION_HISTORY_ITEMS: usize = 100;

106
107
108
    /// Model discovery cache TTL (1 hour)
    const MODEL_CACHE_TTL_SECS: u64 = 3600;

109
110
    /// Create a new OpenAI router
    pub async fn new(
111
        worker_urls: Vec<String>,
112
113
114
115
116
117
        circuit_breaker_config: Option<CircuitBreakerConfig>,
        response_storage: SharedResponseStorage,
        conversation_storage: SharedConversationStorage,
        conversation_item_storage: SharedConversationItemStorage,
    ) -> Result<Self, String> {
        let client = reqwest::Client::builder()
118
            .timeout(Duration::from_secs(300))
119
120
121
            .build()
            .map_err(|e| format!("Failed to create HTTP client: {}", e))?;

122
123
124
125
126
        // Normalize URLs (remove trailing slashes)
        let worker_urls: Vec<String> = worker_urls
            .into_iter()
            .map(|url| url.trim_end_matches('/').to_string())
            .collect();
127
128
129
130
131
132

        // Convert circuit breaker config
        let core_cb_config = circuit_breaker_config
            .map(|cb| CoreCircuitBreakerConfig {
                failure_threshold: cb.failure_threshold,
                success_threshold: cb.success_threshold,
133
134
                timeout_duration: Duration::from_secs(cb.timeout_duration_secs),
                window_duration: Duration::from_secs(cb.window_duration_secs),
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
            })
            .unwrap_or_default();

        let circuit_breaker = CircuitBreaker::with_config(core_cb_config);

        // Optional MCP manager activation via env var path (config-driven gate)
        let mcp_manager = match std::env::var("SGLANG_MCP_CONFIG").ok() {
            Some(path) if !path.trim().is_empty() => {
                match crate::mcp::McpConfig::from_file(&path).await {
                    Ok(cfg) => match crate::mcp::McpClientManager::new(cfg).await {
                        Ok(mgr) => Some(Arc::new(mgr)),
                        Err(err) => {
                            warn!("Failed to initialize MCP manager: {}", err);
                            None
                        }
                    },
                    Err(err) => {
                        warn!("Failed to load MCP config from '{}': {}", path, err);
                        None
                    }
                }
            }
            _ => None,
        };

        Ok(Self {
            client,
162
163
            worker_urls,
            model_cache: Arc::new(DashMap::new()),
164
165
166
167
168
169
170
171
172
            circuit_breaker,
            healthy: AtomicBool::new(true),
            response_storage,
            conversation_storage,
            conversation_item_storage,
            mcp_manager,
        })
    }

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    /// Discover which endpoint has the model
    async fn find_endpoint_for_model(
        &self,
        model_id: &str,
        auth_header: Option<&str>,
    ) -> Result<String, Response> {
        // Single endpoint - fast path
        if self.worker_urls.len() == 1 {
            return Ok(self.worker_urls[0].clone());
        }

        // Check cache
        if let Some(entry) = self.model_cache.get(model_id) {
            if entry.cached_at.elapsed() < Duration::from_secs(Self::MODEL_CACHE_TTL_SECS) {
                return Ok(entry.url.clone());
            }
        }

        // Probe all endpoints in parallel
        let mut handles = vec![];
        let model = model_id.to_string();
        let auth = auth_header.map(|s| s.to_string());

        for url in &self.worker_urls {
            let handle = tokio::spawn(probe_endpoint_for_model(
                self.client.clone(),
                url.clone(),
                model.clone(),
                auth.clone(),
            ));
            handles.push(handle);
        }

        // Return first successful endpoint
        for handle in handles {
            if let Ok(Ok(url)) = handle.await {
                // Cache it
                self.model_cache.insert(
                    model_id.to_string(),
                    CachedEndpoint {
                        url: url.clone(),
                        cached_at: Instant::now(),
                    },
                );
                return Ok(url);
            }
        }

        // Model not found on any endpoint
        Err((
            StatusCode::NOT_FOUND,
            Json(json!({
                "error": {
                    "message": format!("Model '{}' not found on any endpoint", model_id),
                    "type": "model_not_found",
                }
            })),
        )
            .into_response())
    }

234
235
236
237
238
239
240
241
242
243
    /// Handle non-streaming response with optional MCP tool loop
    async fn handle_non_streaming_response(
        &self,
        url: String,
        headers: Option<&HeaderMap>,
        mut payload: Value,
        original_body: &ResponsesRequest,
        original_previous_response_id: Option<String>,
    ) -> Response {
        // Check if MCP is active for this request
244
245
246
247
248
        let req_mcp_manager = if let Some(ref tools) = original_body.tools {
            mcp_manager_from_request_tools(tools.as_slice()).await
        } else {
            None
        };
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        let active_mcp = req_mcp_manager.as_ref().or(self.mcp_manager.as_ref());

        let mut response_json: Value;

        // If MCP is active, execute tool loop
        if let Some(mcp) = active_mcp {
            let config = McpLoopConfig::default();

            // Transform MCP tools to function tools
            prepare_mcp_payload_for_streaming(&mut payload, mcp);

            match execute_tool_loop(
                &self.client,
                &url,
                headers,
                payload,
                original_body,
                mcp,
                &config,
            )
            .await
            {
                Ok(resp) => response_json = resp,
                Err(err) => {
                    self.circuit_breaker.record_failure();
                    return (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(json!({"error": {"message": err}})),
                    )
                        .into_response();
                }
            }
        } else {
            // No MCP - simple request
283

284
285
286
287
288
289
290
291
292
            let mut request_builder = self.client.post(&url).json(&payload);
            if let Some(h) = headers {
                request_builder = apply_request_headers(h, request_builder, true);
            }

            let response = match request_builder.send().await {
                Ok(r) => r,
                Err(e) => {
                    self.circuit_breaker.record_failure();
293
294
295
296
297
                    tracing::error!(
                        url = %url,
                        error = %e,
                        "Failed to forward request to OpenAI"
                    );
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
                    return (
                        StatusCode::BAD_GATEWAY,
                        format!("Failed to forward request to OpenAI: {}", e),
                    )
                        .into_response();
                }
            };

            if !response.status().is_success() {
                self.circuit_breaker.record_failure();
                let status = StatusCode::from_u16(response.status().as_u16())
                    .unwrap_or(StatusCode::INTERNAL_SERVER_ERROR);
                let body = response.text().await.unwrap_or_default();
                return (status, body).into_response();
            }

            response_json = match response.json::<Value>().await {
                Ok(r) => r,
                Err(e) => {
                    self.circuit_breaker.record_failure();
                    return (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        format!("Failed to parse upstream response: {}", e),
                    )
                        .into_response();
                }
            };

            self.circuit_breaker.record_success();
        }

        // Patch response with metadata
        mask_tools_as_mcp(&mut response_json, original_body);
        patch_streaming_response_json(
            &mut response_json,
            original_body,
            original_previous_response_id.as_deref(),
        );

337
338
339
340
341
342
343
344
345
346
347
        // Always persist conversation items and response (even without conversation)
        if let Err(err) = persist_conversation_items(
            self.conversation_storage.clone(),
            self.conversation_item_storage.clone(),
            self.response_storage.clone(),
            &response_json,
            original_body,
        )
        .await
        {
            warn!("Failed to persist conversation items: {}", err);
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        }

        (StatusCode::OK, Json(response_json)).into_response()
    }
}

// ============================================================================
// RouterTrait Implementation
// ============================================================================

#[async_trait::async_trait]
impl crate::routers::RouterTrait for OpenAIRouter {
    fn as_any(&self) -> &dyn Any {
        self
    }

    async fn health_generate(&self, _req: Request<Body>) -> Response {
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
        // Check all endpoints in parallel - only healthy if ALL are healthy
        if self.worker_urls.is_empty() {
            return (StatusCode::SERVICE_UNAVAILABLE, "No endpoints configured").into_response();
        }

        let mut handles = vec![];
        for url in &self.worker_urls {
            let url = url.clone();
            let client = self.client.clone();

            let handle = tokio::spawn(async move {
                let probe_url = format!("{}/v1/models", url);
                match client
                    .get(&probe_url)
                    .timeout(Duration::from_secs(2))
                    .send()
                    .await
                {
                    Ok(resp) => {
                        let code = resp.status();
                        // Treat success and auth-required as healthy (endpoint reachable)
                        if code.is_success() || code.as_u16() == 401 || code.as_u16() == 403 {
                            Ok(())
                        } else {
                            Err(format!("Endpoint {} returned status {}", url, code))
                        }
                    }
                    Err(e) => Err(format!("Endpoint {} error: {}", url, e)),
393
                }
394
395
396
397
398
399
400
401
402
403
404
405
            });

            handles.push(handle);
        }

        // Collect all results
        let mut errors = Vec::new();
        for handle in handles {
            match handle.await {
                Ok(Ok(())) => (),
                Ok(Err(e)) => errors.push(e),
                Err(e) => errors.push(format!("Task join error: {}", e)),
406
            }
407
408
409
410
411
412
        }

        if errors.is_empty() {
            (StatusCode::OK, "OK").into_response()
        } else {
            (
413
                StatusCode::SERVICE_UNAVAILABLE,
414
                format!("Some endpoints unhealthy: {}", errors.join(", ")),
415
            )
416
                .into_response()
417
418
419
420
421
422
        }
    }

    async fn get_server_info(&self, _req: Request<Body>) -> Response {
        let info = json!({
            "router_type": "openai",
423
424
            "workers": self.worker_urls.len(),
            "worker_urls": &self.worker_urls
425
426
427
428
429
        });
        (StatusCode::OK, info.to_string()).into_response()
    }

    async fn get_models(&self, req: Request<Body>) -> Response {
430
431
432
        // Aggregate models from all endpoints
        if self.worker_urls.is_empty() {
            return (StatusCode::SERVICE_UNAVAILABLE, "No endpoints configured").into_response();
433
434
        }

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
        let headers = req.headers();
        let auth = headers
            .get("authorization")
            .or_else(|| headers.get("Authorization"));

        // Query all endpoints in parallel
        let mut handles = vec![];
        for url in &self.worker_urls {
            let url = url.clone();
            let client = self.client.clone();
            let auth = auth.cloned();

            let handle = tokio::spawn(async move {
                let models_url = format!("{}/v1/models", url);
                let req = client.get(&models_url);

                // Apply provider-specific headers (handles Anthropic, xAI, OpenAI, etc.)
                let req = apply_provider_headers(req, &url, auth.as_ref());

                match req.send().await {
                    Ok(res) => {
                        if res.status().is_success() {
                            match res.json::<Value>().await {
                                Ok(json) => Ok(json),
                                Err(e) => {
                                    tracing::warn!(
                                        "Failed to parse models response from '{}': {}",
                                        url,
                                        e
                                    );
                                    Err(())
                                }
                            }
                        } else {
                            tracing::warn!(
                                "Getting models from '{}' failed with status: {}",
                                url,
                                res.status()
                            );
                            Err(())
475
476
                        }
                    }
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
                    Err(e) => {
                        tracing::warn!("Request to get models from '{}' failed: {}", url, e);
                        Err(())
                    }
                }
            });

            handles.push(handle);
        }

        // Collect all model lists
        let mut all_models = Vec::new();
        for handle in handles {
            if let Ok(Ok(json)) = handle.await {
                if let Some(data) = json.get("data").and_then(|v| v.as_array()) {
                    all_models.extend_from_slice(data);
493
494
495
                }
            }
        }
496
497
498
499
500
501
502
503

        // Return aggregated models
        let response_json = json!({
            "object": "list",
            "data": all_models
        });

        (StatusCode::OK, Json(response_json)).into_response()
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    }

    async fn get_model_info(&self, _req: Request<Body>) -> Response {
        // Not directly supported without model param; return 501
        (
            StatusCode::NOT_IMPLEMENTED,
            "get_model_info not implemented for OpenAI router",
        )
            .into_response()
    }

    async fn route_generate(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &GenerateRequest,
        _model_id: Option<&str>,
    ) -> Response {
        // Generate endpoint is SGLang-specific, not supported for OpenAI backend
        (
            StatusCode::NOT_IMPLEMENTED,
            "Generate endpoint not supported for OpenAI backend",
        )
            .into_response()
    }

    async fn route_chat(
        &self,
        headers: Option<&HeaderMap>,
        body: &ChatCompletionRequest,
        _model_id: Option<&str>,
    ) -> Response {
        if !self.circuit_breaker.can_execute() {
            return (StatusCode::SERVICE_UNAVAILABLE, "Circuit breaker open").into_response();
        }

539
540
541
542
543
544
545
546
547
548
549
550
        // Extract auth header
        let auth = extract_auth_header(headers);

        // Find endpoint for model
        let base_url = match self
            .find_endpoint_for_model(body.model.as_str(), auth)
            .await
        {
            Ok(url) => url,
            Err(response) => return response,
        };

551
552
553
554
555
556
557
558
559
560
561
562
        // Serialize request body, removing SGLang-only fields
        let mut payload = match to_value(body) {
            Ok(v) => v,
            Err(e) => {
                return (
                    StatusCode::BAD_REQUEST,
                    format!("Failed to serialize request: {}", e),
                )
                    .into_response();
            }
        };
        if let Some(obj) = payload.as_object_mut() {
563
            // Always remove SGLang-specific fields (unsupported by OpenAI)
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
            for key in [
                "top_k",
                "min_p",
                "min_tokens",
                "regex",
                "ebnf",
                "stop_token_ids",
                "no_stop_trim",
                "ignore_eos",
                "continue_final_message",
                "skip_special_tokens",
                "lora_path",
                "session_params",
                "separate_reasoning",
                "stream_reasoning",
                "chat_template_kwargs",
                "return_hidden_states",
                "repetition_penalty",
                "sampling_seed",
            ] {
                obj.remove(key);
            }
586
587
588
589
590

            // Remove logprobs if false (Gemini don't accept it)
            if obj.get("logprobs").and_then(|v| v.as_bool()) == Some(false) {
                obj.remove("logprobs");
            }
591
592
        }

593
        let url = format!("{}/v1/chat/completions", base_url);
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
        let mut req = self.client.post(&url).json(&payload);

        // Forward Authorization header if provided
        if let Some(h) = headers {
            if let Some(auth) = h.get("authorization").or_else(|| h.get("Authorization")) {
                req = req.header("Authorization", auth);
            }
        }

        // Accept SSE when stream=true
        if body.stream {
            req = req.header("Accept", "text/event-stream");
        }

        let resp = match req.send().await {
            Ok(r) => r,
            Err(e) => {
                self.circuit_breaker.record_failure();
                return (
                    StatusCode::SERVICE_UNAVAILABLE,
                    format!("Failed to contact upstream: {}", e),
                )
                    .into_response();
            }
        };

        let status = StatusCode::from_u16(resp.status().as_u16())
            .unwrap_or(StatusCode::INTERNAL_SERVER_ERROR);

        if !body.stream {
            // Capture Content-Type before consuming response body
            let content_type = resp.headers().get(CONTENT_TYPE).cloned();
            match resp.bytes().await {
                Ok(body) => {
                    self.circuit_breaker.record_success();
                    let mut response = Response::new(Body::from(body));
                    *response.status_mut() = status;
                    if let Some(ct) = content_type {
                        response.headers_mut().insert(CONTENT_TYPE, ct);
                    }
                    response
                }
                Err(e) => {
                    self.circuit_breaker.record_failure();
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        format!("Failed to read response: {}", e),
                    )
                        .into_response()
                }
            }
        } else {
            // Stream SSE bytes to client
            let stream = resp.bytes_stream();
            let (tx, rx) = mpsc::unbounded_channel();
            tokio::spawn(async move {
                let mut s = stream;
                while let Some(chunk) = s.next().await {
                    match chunk {
                        Ok(bytes) => {
                            if tx.send(Ok(bytes)).is_err() {
                                break;
                            }
                        }
                        Err(e) => {
                            let _ = tx.send(Err(format!("Stream error: {}", e)));
                            break;
                        }
                    }
                }
            });
            let mut response = Response::new(Body::from_stream(UnboundedReceiverStream::new(rx)));
            *response.status_mut() = status;
            response
                .headers_mut()
                .insert(CONTENT_TYPE, HeaderValue::from_static("text/event-stream"));
            response
        }
    }

    async fn route_completion(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &CompletionRequest,
        _model_id: Option<&str>,
    ) -> Response {
        // Completion endpoint not implemented for OpenAI backend
        (
            StatusCode::NOT_IMPLEMENTED,
            "Completion endpoint not implemented for OpenAI backend",
        )
            .into_response()
    }

    async fn route_responses(
        &self,
        headers: Option<&HeaderMap>,
        body: &ResponsesRequest,
        model_id: Option<&str>,
    ) -> Response {
694
695
696
697
698
699
700
701
702
703
704
        // Extract auth header
        let auth = extract_auth_header(headers);

        // Find endpoint for model (use model_id if provided, otherwise use body.model)
        let model = model_id.unwrap_or(body.model.as_str());
        let base_url = match self.find_endpoint_for_model(model, auth).await {
            Ok(url) => url,
            Err(response) => return response,
        };

        let url = format!("{}/v1/responses", base_url);
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

        // Validate mutually exclusive params: previous_response_id and conversation
        // TODO: this validation logic should move the right place, also we need a proper error message module
        if body.previous_response_id.is_some() && body.conversation.is_some() {
            return (
                StatusCode::BAD_REQUEST,
                Json(json!({
                    "error": {
                        "message": "Mutually exclusive parameters. Ensure you are only providing one of: 'previous_response_id' or 'conversation'.",
                        "type": "invalid_request_error",
                        "param": Value::Null,
                        "code": "mutually_exclusive_parameters"
                    }
                })),
            )
                .into_response();
        }

723
        // Clone the body for validation and logic, but we'll build payload differently
724
725
        let mut request_body = body.clone();
        if let Some(model) = model_id {
726
            request_body.model = model.to_string();
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
        }
        // Do not forward conversation field upstream; retain for local persistence only
        request_body.conversation = None;

        // Store the original previous_response_id for the response
        let original_previous_response_id = request_body.previous_response_id.clone();

        // Handle previous_response_id by loading prior context
        let mut conversation_items: Option<Vec<ResponseInputOutputItem>> = None;
        if let Some(prev_id_str) = request_body.previous_response_id.clone() {
            let prev_id = ResponseId::from(prev_id_str.as_str());
            match self
                .response_storage
                .get_response_chain(&prev_id, None)
                .await
            {
                Ok(chain) => {
                    let mut items = Vec::new();
                    for stored in chain.responses.iter() {
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
                        // Convert input items from stored input (which is now a JSON array)
                        if let Some(input_arr) = stored.input.as_array() {
                            for item in input_arr {
                                match serde_json::from_value::<ResponseInputOutputItem>(
                                    item.clone(),
                                ) {
                                    Ok(input_item) => {
                                        items.push(input_item);
                                    }
                                    Err(e) => {
                                        warn!(
                                            "Failed to deserialize stored input item: {}. Item: {}",
                                            e, item
                                        );
                                    }
                                }
                            }
                        }

                        // Convert output items from stored output (which is now a JSON array)
                        if let Some(output_arr) = stored.output.as_array() {
767
                            for item in output_arr {
768
769
770
771
772
773
774
775
776
                                match serde_json::from_value::<ResponseInputOutputItem>(
                                    item.clone(),
                                ) {
                                    Ok(output_item) => {
                                        items.push(output_item);
                                    }
                                    Err(e) => {
                                        warn!("Failed to deserialize stored output item: {}. Item: {}", e, item);
                                    }
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
                                }
                            }
                        }
                    }
                    conversation_items = Some(items);
                    request_body.previous_response_id = None;
                }
                Err(e) => {
                    warn!(
                        "Failed to load previous response chain for {}: {}",
                        prev_id_str, e
                    );
                }
            }
        }

        // Handle conversation by loading history
        if let Some(conv_id_str) = body.conversation.clone() {
            let conv_id = ConversationId::from(conv_id_str.as_str());

            // Verify conversation exists
            if let Ok(None) = self.conversation_storage.get_conversation(&conv_id).await {
                return (
                    StatusCode::NOT_FOUND,
                    Json(json!({"error": "Conversation not found"})),
                )
                    .into_response();
            }

            // Load conversation history (ascending order for chronological context)
            let params = ListParams {
                limit: Self::MAX_CONVERSATION_HISTORY_ITEMS,
                order: SortOrder::Asc,
                after: None,
            };

            match self
                .conversation_item_storage
                .list_items(&conv_id, params)
                .await
            {
                Ok(stored_items) => {
                    let mut items: Vec<ResponseInputOutputItem> = Vec::new();
                    for item in stored_items.into_iter() {
                        // Only use message items for conversation context
                        // Skip non-message items (reasoning, function calls, etc.)
                        if item.item_type == "message" {
                            if let Ok(content_parts) =
                                serde_json::from_value::<Vec<ResponseContentPart>>(
                                    item.content.clone(),
                                )
                            {
                                items.push(ResponseInputOutputItem::Message {
                                    id: item.id.0.clone(),
                                    role: item.role.clone().unwrap_or_else(|| "user".to_string()),
                                    content: content_parts,
                                    status: item.status.clone(),
                                });
                            }
                        }
                    }

                    // Append current request
                    match &request_body.input {
                        ResponseInput::Text(text) => {
                            items.push(ResponseInputOutputItem::Message {
                                id: format!("msg_u_{}", conv_id.0),
                                role: "user".to_string(),
                                content: vec![ResponseContentPart::InputText {
                                    text: text.clone(),
                                }],
                                status: Some("completed".to_string()),
                            });
                        }
                        ResponseInput::Items(current_items) => {
852
853
854
855
856
857
                            // Process all item types, converting SimpleInputMessage to Message
                            for item in current_items.iter() {
                                let normalized =
                                    crate::protocols::responses::normalize_input_item(item);
                                items.push(normalized);
                            }
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
                        }
                    }

                    request_body.input = ResponseInput::Items(items);
                }
                Err(e) => {
                    warn!("Failed to load conversation history: {}", e);
                }
            }
        }

        // If we have conversation_items from previous_response_id, use them
        if let Some(mut items) = conversation_items {
            // Append current request
            match &request_body.input {
                ResponseInput::Text(text) => {
                    items.push(ResponseInputOutputItem::Message {
                        id: format!(
                            "msg_u_{}",
                            original_previous_response_id
                                .as_ref()
                                .unwrap_or(&"new".to_string())
                        ),
                        role: "user".to_string(),
                        content: vec![ResponseContentPart::InputText { text: text.clone() }],
                        status: Some("completed".to_string()),
                    });
                }
                ResponseInput::Items(current_items) => {
887
888
889
890
891
                    // Process all item types, converting SimpleInputMessage to Message
                    for item in current_items.iter() {
                        let normalized = crate::protocols::responses::normalize_input_item(item);
                        items.push(normalized);
                    }
892
893
894
895
896
897
898
                }
            }

            request_body.input = ResponseInput::Items(items);
        }

        // Always set store=false for upstream (we store internally)
899
        request_body.store = Some(false);
900
901
902
903
904
905
906
907
908
909
910
911
912

        // Convert to JSON and strip SGLang-specific fields
        let mut payload = match to_value(&request_body) {
            Ok(v) => v,
            Err(e) => {
                return (
                    StatusCode::BAD_REQUEST,
                    format!("Failed to serialize request: {}", e),
                )
                    .into_response();
            }
        };

913
        // Remove SGLang-specific fields only
914
        if let Some(obj) = payload.as_object_mut() {
915
            // Remove SGLang-specific fields (not part of OpenAI API)
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
            for key in [
                "request_id",
                "priority",
                "top_k",
                "min_p",
                "min_tokens",
                "regex",
                "ebnf",
                "stop_token_ids",
                "no_stop_trim",
                "ignore_eos",
                "continue_final_message",
                "skip_special_tokens",
                "lora_path",
                "session_params",
                "separate_reasoning",
                "stream_reasoning",
                "chat_template_kwargs",
                "return_hidden_states",
                "repetition_penalty",
                "sampling_seed",
            ] {
                obj.remove(key);
            }
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
            // XAI (Grok models) requires special handling of input items
            // Check if model is a Grok model
            let is_grok_model = obj
                .get("model")
                .and_then(|v| v.as_str())
                .map(|m| m.starts_with("grok"))
                .unwrap_or(false);

            if is_grok_model {
                // XAI doesn't support the OPENAI item type input: https://platform.openai.com/docs/api-reference/responses/create#responses-create-input-input-item-list-item
                // To Achieve XAI compatibility, strip extra fields from input messages (id, status)
                // XAI doesn't support output_text as type for content with role of assistant
                // so normalize content types: output_text -> input_text
                if let Some(input_arr) = obj.get_mut("input").and_then(Value::as_array_mut) {
                    for item_obj in input_arr.iter_mut().filter_map(Value::as_object_mut) {
                        // Remove fields not universally supported
                        item_obj.remove("id");
                        item_obj.remove("status");

                        // Normalize content types to input_text (xAI compatibility)
                        if let Some(content_arr) =
                            item_obj.get_mut("content").and_then(Value::as_array_mut)
                        {
                            for content_obj in
                                content_arr.iter_mut().filter_map(Value::as_object_mut)
965
                            {
966
967
968
969
970
971
972
973
974
                                // Change output_text to input_text
                                if content_obj.get("type").and_then(Value::as_str)
                                    == Some("output_text")
                                {
                                    content_obj.insert(
                                        "type".to_string(),
                                        Value::String("input_text".to_string()),
                                    );
                                }
975
976
977
978
979
                            }
                        }
                    }
                }
            }
980
981
982
        }

        // Delegate to streaming or non-streaming handler
983
        if body.stream.unwrap_or(false) {
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
            handle_streaming_response(
                &self.client,
                &self.circuit_breaker,
                self.mcp_manager.as_ref(),
                self.response_storage.clone(),
                self.conversation_storage.clone(),
                self.conversation_item_storage.clone(),
                url,
                headers,
                payload,
                body,
                original_previous_response_id,
            )
            .await
        } else {
            self.handle_non_streaming_response(
                url,
                headers,
                payload,
                body,
                original_previous_response_id,
            )
            .await
        }
    }

    async fn get_response(
        &self,
        _headers: Option<&HeaderMap>,
        response_id: &str,
        _params: &ResponsesGetParams,
    ) -> Response {
        let id = ResponseId::from(response_id);
        match self.response_storage.get_response(&id).await {
            Ok(Some(stored)) => {
                let mut response_json = stored.raw_response;
                if let Some(obj) = response_json.as_object_mut() {
                    obj.insert("id".to_string(), json!(id.0));
                }
                (StatusCode::OK, Json(response_json)).into_response()
            }
            Ok(None) => (
                StatusCode::NOT_FOUND,
                Json(json!({"error": "Response not found"})),
            )
                .into_response(),
            Err(e) => (
                StatusCode::INTERNAL_SERVER_ERROR,
1032
                Json(json!({ "error": format!("Failed to get response: {}", e) })),
1033
1034
1035
1036
1037
            )
                .into_response(),
        }
    }

1038
1039
1040
1041
1042
1043
    async fn cancel_response(&self, _headers: Option<&HeaderMap>, _response_id: &str) -> Response {
        (
            StatusCode::NOT_IMPLEMENTED,
            "Cancel response not implemented for OpenAI router",
        )
            .into_response()
1044
1045
    }

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
    async fn list_response_input_items(
        &self,
        _headers: Option<&HeaderMap>,
        response_id: &str,
    ) -> Response {
        let resp_id = ResponseId::from(response_id);

        match self.response_storage.get_response(&resp_id).await {
            Ok(Some(stored)) => {
                // Extract items from input field (which is a JSON array)
                let items = match &stored.input {
                    Value::Array(arr) => arr.clone(),
                    _ => vec![],
                };

                // Generate IDs for items if they don't have them
                let items_with_ids: Vec<Value> = items
                    .into_iter()
                    .map(|mut item| {
                        if item.get("id").is_none() {
                            // Generate ID if not present using centralized utility
                            if let Some(obj) = item.as_object_mut() {
                                obj.insert(
                                    "id".to_string(),
                                    json!(super::utils::generate_id("msg")),
                                );
                            }
                        }
                        item
                    })
                    .collect();

                let response_body = json!({
                    "object": "list",
                    "data": items_with_ids,
                    "first_id": items_with_ids.first().and_then(|v| v.get("id").and_then(|i| i.as_str())),
                    "last_id": items_with_ids.last().and_then(|v| v.get("id").and_then(|i| i.as_str())),
                    "has_more": false
                });

                (StatusCode::OK, Json(response_body)).into_response()
            }
            Ok(None) => (
                StatusCode::NOT_FOUND,
                Json(json!({
                    "error": {
                        "message": format!("No response found with id '{}'", response_id),
                        "type": "invalid_request_error",
                        "param": Value::Null,
                        "code": "not_found"
                    }
                })),
            )
                .into_response(),
            Err(e) => {
                warn!("Failed to retrieve input items for {}: {}", response_id, e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(json!({
                        "error": {
                            "message": format!("Failed to retrieve input items: {}", e),
                            "type": "internal_error",
                            "param": Value::Null,
                            "code": "storage_error"
                        }
                    })),
                )
                    .into_response()
            }
        }
    }

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
    async fn route_embeddings(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &EmbeddingRequest,
        _model_id: Option<&str>,
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED, "Embeddings not supported").into_response()
    }

    async fn route_rerank(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &RerankRequest,
        _model_id: Option<&str>,
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED, "Rerank not supported").into_response()
    }

1136
1137
1138
1139
1140
1141
1142
1143
1144
    async fn route_classify(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &ClassifyRequest,
        _model_id: Option<&str>,
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED, "Classify not supported").into_response()
    }

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
    async fn create_conversation(&self, _headers: Option<&HeaderMap>, body: &Value) -> Response {
        create_conversation(&self.conversation_storage, body.clone()).await
    }

    async fn get_conversation(
        &self,
        _headers: Option<&HeaderMap>,
        conversation_id: &str,
    ) -> Response {
        get_conversation(&self.conversation_storage, conversation_id).await
    }

    async fn update_conversation(
        &self,
        _headers: Option<&HeaderMap>,
        conversation_id: &str,
        body: &Value,
    ) -> Response {
        update_conversation(&self.conversation_storage, conversation_id, body.clone()).await
    }

    async fn delete_conversation(
        &self,
        _headers: Option<&HeaderMap>,
        conversation_id: &str,
    ) -> Response {
        delete_conversation(&self.conversation_storage, conversation_id).await
    }

    fn router_type(&self) -> &'static str {
        "openai"
    }

    async fn list_conversation_items(
        &self,
        _headers: Option<&HeaderMap>,
        conversation_id: &str,
        limit: Option<usize>,
        order: Option<String>,
        after: Option<String>,
    ) -> Response {
        let mut query_params = std::collections::HashMap::new();
        query_params.insert("limit".to_string(), limit.unwrap_or(100).to_string());
        if let Some(after_val) = after {
            if !after_val.is_empty() {
                query_params.insert("after".to_string(), after_val);
            }
        }
        if let Some(order_val) = order {
            query_params.insert("order".to_string(), order_val);
        }

        list_conversation_items(
            &self.conversation_storage,
            &self.conversation_item_storage,
            conversation_id,
            query_params,
        )
        .await
    }
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

    async fn create_conversation_items(
        &self,
        _headers: Option<&HeaderMap>,
        conversation_id: &str,
        body: &Value,
    ) -> Response {
        create_conversation_items(
            &self.conversation_storage,
            &self.conversation_item_storage,
            conversation_id,
            body.clone(),
        )
        .await
    }

    async fn get_conversation_item(
        &self,
        _headers: Option<&HeaderMap>,
        conversation_id: &str,
        item_id: &str,
        include: Option<Vec<String>>,
    ) -> Response {
        get_conversation_item(
            &self.conversation_storage,
            &self.conversation_item_storage,
            conversation_id,
            item_id,
            include,
        )
        .await
    }

    async fn delete_conversation_item(
        &self,
        _headers: Option<&HeaderMap>,
        conversation_id: &str,
        item_id: &str,
    ) -> Response {
        delete_conversation_item(
            &self.conversation_storage,
            &self.conversation_item_storage,
            conversation_id,
            item_id,
        )
        .await
    }
1252
}