lora.ipynb 13.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# LoRA Serving"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "SGLang enables the use of [LoRA adapters](https://arxiv.org/abs/2106.09685) with a base model. By incorporating techniques from [S-LoRA](https://arxiv.org/pdf/2311.03285) and [Punica](https://arxiv.org/pdf/2310.18547), SGLang can efficiently support multiple LoRA adapters for different sequences within a single batch of inputs."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Arguments for LoRA Serving"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The following server arguments are relevant for multi-LoRA serving:\n",
    "\n",
30
31
    "* `enable_lora`: Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.\n",
    "\n",
32
33
34
35
36
37
    "* `lora_paths`: A mapping from each adaptor's name to its path, in the form of `{name}={path} {name}={path}`.\n",
    "\n",
    "* `max_loras_per_batch`: Maximum number of adaptors used by each batch. This argument can affect the amount of GPU memory reserved for multi-LoRA serving, so it should be set to a smaller value when memory is scarce. Defaults to be 8.\n",
    "\n",
    "* `lora_backend`: The backend of running GEMM kernels for Lora modules. It can be one of `triton` or `flashinfer`, and set to `triton` by default. For better performance and stability, we recommend using the Triton LoRA backend. In the future, faster backend built upon Cutlass or Cuda kernels will be added.\n",
    "\n",
38
39
    "* `max_lora_rank`: The maximum LoRA rank that should be supported. If not specified, it will be automatically inferred from the adapters provided in `--lora-paths`. This argument is needed when you expect to dynamically load adapters of larger LoRA rank after server startup.\n",
    "\n",
40
    "* `lora_target_modules`: The union set of all target modules where LoRA should be applied (e.g., `q_proj`, `k_proj`, `gate_proj`). If not specified, it will be automatically inferred from the adapters provided in `--lora-paths`. This argument is needed when you expect to dynamically load adapters of different target modules after server startup. You can also set it to `all` to enable LoRA for all supported modules. However, enabling LoRA on additional modules introduces a minor performance overhead. If your application is performance-sensitive, we recommend only specifying the modules for which you plan to load adapters.\n",
41
    "\n",
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    "* `tp_size`: LoRA serving along with Tensor Parallelism is supported by SGLang. `tp_size` controls the number of GPUs for tensor parallelism. More details on the tensor sharding strategy can be found in [S-Lora](https://arxiv.org/pdf/2311.03285) paper.\n",
    "\n",
    "From client side, the user needs to provide a list of strings as input batch, and a list of adaptor names that each input sequence corresponds to."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Usage\n",
    "\n",
    "### Serving Single Adaptor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sglang.test.test_utils import is_in_ci\n",
    "\n",
    "if is_in_ci():\n",
    "    from patch import launch_server_cmd\n",
    "else:\n",
    "    from sglang.utils import launch_server_cmd\n",
    "\n",
    "from sglang.utils import wait_for_server, terminate_process\n",
    "\n",
    "import json\n",
    "import requests"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
84
    "    --enable-lora \\\n",
85
86
    "    --lora-paths lora0=algoprog/fact-generation-llama-3.1-8b-instruct-lora \\\n",
    "    --max-loras-per-batch 1 --lora-backend triton \\\n",
87
    "    --disable-radix-cache\n",
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = f\"http://127.0.0.1:{port}\"\n",
    "json_data = {\n",
    "    \"text\": [\n",
    "        \"List 3 countries and their capitals.\",\n",
104
    "        \"List 3 countries and their capitals.\",\n",
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    "    ],\n",
    "    \"sampling_params\": {\"max_new_tokens\": 32, \"temperature\": 0},\n",
    "    # The first input uses lora0, and the second input uses the base model\n",
    "    \"lora_path\": [\"lora0\", None],\n",
    "}\n",
    "response = requests.post(\n",
    "    url + \"/generate\",\n",
    "    json=json_data,\n",
    ")\n",
    "print(f\"Output 0: {response.json()[0]['text']}\")\n",
    "print(f\"Output 1: {response.json()[1]['text']}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Serving Multiple Adaptors"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
143
    "    --enable-lora \\\n",
144
145
146
    "    --lora-paths lora0=algoprog/fact-generation-llama-3.1-8b-instruct-lora \\\n",
    "    lora1=Nutanix/Meta-Llama-3.1-8B-Instruct_lora_4_alpha_16 \\\n",
    "    --max-loras-per-batch 2 --lora-backend triton \\\n",
147
    "    --disable-radix-cache\n",
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = f\"http://127.0.0.1:{port}\"\n",
    "json_data = {\n",
    "    \"text\": [\n",
    "        \"List 3 countries and their capitals.\",\n",
164
    "        \"List 3 countries and their capitals.\",\n",
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    "    ],\n",
    "    \"sampling_params\": {\"max_new_tokens\": 32, \"temperature\": 0},\n",
    "    # The first input uses lora0, and the second input uses lora1\n",
    "    \"lora_path\": [\"lora0\", \"lora1\"],\n",
    "}\n",
    "response = requests.post(\n",
    "    url + \"/generate\",\n",
    "    json=json_data,\n",
    ")\n",
    "print(f\"Output 0: {response.json()[0]['text']}\")\n",
    "print(f\"Output 1: {response.json()[1]['text']}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
187
188
189
190
191
192
193
194
195
196
197
198
199
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Dynamic LoRA loading"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Instead of specifying all adapters during server startup via `--lora-paths`. You can also load & unload LoRA adapters dynamically via the `/load_lora_adapter` and `/unload_lora_adapter` API.\n",
    "\n",
200
    "When using dynamic LoRA loading, it's recommended to explicitly specify both `--max-lora-rank` and `--lora-target-modules` at startup. For backward compatibility, SGLang will infer these values from `--lora-paths` if they are not explicitly provided. However, in that case, you would have to ensure that all dynamically loaded adapters share the same shape (rank and target modules) as those in the initial `--lora-paths` or are strictly \"smaller\"."
201
202
203
204
205
206
207
208
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
209
210
211
212
213
214
215
    "lora0 = \"Nutanix/Meta-Llama-3.1-8B-Instruct_lora_4_alpha_16\"  # rank - 4, target modules - q_proj, k_proj, v_proj, o_proj, gate_proj\n",
    "lora1 = \"algoprog/fact-generation-llama-3.1-8b-instruct-lora\"  # rank - 64, target modules - q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj\n",
    "lora0_new = \"philschmid/code-llama-3-1-8b-text-to-sql-lora\"  # rank - 256, target modules - q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj\n",
    "\n",
    "\n",
    "# The `--target-lora-modules` param below is technically not needed, as the server will infer it from lora0 which already has all the target modules specified.\n",
    "# We are adding it here just to demonstrate usage.\n",
216
217
218
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "    python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
219
    "    --enable-lora \\\n",
220
221
222
    "    --cuda-graph-max-bs 2 \\\n",
    "    --max-loras-per-batch 2 --lora-backend triton \\\n",
    "    --disable-radix-cache\n",
223
224
    "    --max-lora-rank 256\n",
    "    --lora-target-modules all\n",
225
226
227
228
229
230
231
    "    \"\"\"\n",
    ")\n",
    "\n",
    "url = f\"http://127.0.0.1:{port}\"\n",
    "wait_for_server(url)"
   ]
  },
232
233
234
235
236
237
238
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Load adapter lora0"
   ]
  },
239
240
241
242
243
244
245
246
247
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = requests.post(\n",
    "    url + \"/load_lora_adapter\",\n",
    "    json={\n",
248
249
    "        \"lora_name\": \"lora0\",\n",
    "        \"lora_path\": lora0,\n",
250
251
252
253
254
255
256
257
258
259
    "    },\n",
    ")\n",
    "\n",
    "if response.status_code == 200:\n",
    "    print(\"LoRA adapter loaded successfully.\", response.json())\n",
    "else:\n",
    "    print(\"Failed to load LoRA adapter.\", response.json())"
   ]
  },
  {
260
   "cell_type": "markdown",
261
262
   "metadata": {},
   "source": [
263
    "Load adapter lora1:"
264
265
266
267
268
269
270
271
272
273
274
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = requests.post(\n",
    "    url + \"/load_lora_adapter\",\n",
    "    json={\n",
275
276
    "        \"lora_name\": \"lora1\",\n",
    "        \"lora_path\": lora1,\n",
277
278
279
280
281
282
283
284
285
286
    "    },\n",
    ")\n",
    "\n",
    "if response.status_code == 200:\n",
    "    print(\"LoRA adapter loaded successfully.\", response.json())\n",
    "else:\n",
    "    print(\"Failed to load LoRA adapter.\", response.json())"
   ]
  },
  {
287
   "cell_type": "markdown",
288
289
   "metadata": {},
   "source": [
290
    "Check inference output:"
291
292
293
294
295
296
297
298
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    "url = f\"http://127.0.0.1:{port}\"\n",
    "json_data = {\n",
    "    \"text\": [\n",
    "        \"List 3 countries and their capitals.\",\n",
    "        \"List 3 countries and their capitals.\",\n",
    "    ],\n",
    "    \"sampling_params\": {\"max_new_tokens\": 32, \"temperature\": 0},\n",
    "    # The first input uses lora0, and the second input uses lora1\n",
    "    \"lora_path\": [\"lora0\", \"lora1\"],\n",
    "}\n",
    "response = requests.post(\n",
    "    url + \"/generate\",\n",
    "    json=json_data,\n",
    ")\n",
    "print(f\"Output from lora0: \\n{response.json()[0]['text']}\\n\")\n",
    "print(f\"Output from lora1 (updated): \\n{response.json()[1]['text']}\\n\")"
315
316
317
318
319
320
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
321
    "Unload lora0 and replace it with a different adapter:"
322
323
324
325
326
327
328
329
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
330
331
332
333
334
    "response = requests.post(\n",
    "    url + \"/unload_lora_adapter\",\n",
    "    json={\n",
    "        \"lora_name\": \"lora0\",\n",
    "    },\n",
335
336
337
338
339
    ")\n",
    "\n",
    "response = requests.post(\n",
    "    url + \"/load_lora_adapter\",\n",
    "    json={\n",
340
341
    "        \"lora_name\": \"lora0\",\n",
    "        \"lora_path\": lora0_new,\n",
342
343
344
345
346
347
348
349
350
    "    },\n",
    ")\n",
    "\n",
    "if response.status_code == 200:\n",
    "    print(\"LoRA adapter loaded successfully.\", response.json())\n",
    "else:\n",
    "    print(\"Failed to load LoRA adapter.\", response.json())"
   ]
  },
351
352
353
354
355
356
357
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Check output again:"
   ]
  },
358
359
360
361
362
363
364
365
366
367
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = f\"http://127.0.0.1:{port}\"\n",
    "json_data = {\n",
    "    \"text\": [\n",
    "        \"List 3 countries and their capitals.\",\n",
368
    "        \"List 3 countries and their capitals.\",\n",
369
370
371
372
373
374
375
376
377
    "    ],\n",
    "    \"sampling_params\": {\"max_new_tokens\": 32, \"temperature\": 0},\n",
    "    # The first input uses lora0, and the second input uses lora1\n",
    "    \"lora_path\": [\"lora0\", \"lora1\"],\n",
    "}\n",
    "response = requests.post(\n",
    "    url + \"/generate\",\n",
    "    json=json_data,\n",
    ")\n",
378
379
    "print(f\"Output from lora0: \\n{response.json()[0]['text']}\\n\")\n",
    "print(f\"Output from lora1 (updated): \\n{response.json()[1]['text']}\\n\")"
380
381
382
383
384
385
386
387
388
389
390
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
391
392
393
394
395
396
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Future Works\n",
    "\n",
397
    "The development roadmap for LoRA-related features can be found in this [issue](https://github.com/sgl-project/sglang/issues/2929). Currently radix attention is incompatible with LoRA and must be manually disabled. Other features, including Unified Paging, Cutlass backend, and dynamic loading/unloadingm, are still under development."
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}