utils.py 4.31 KB
Newer Older
1
2
3
import math

import torch
4
import torch.nn.functional as F
5
6
7
8
9
10
11
12

precision = {
    torch.bfloat16: 1e-2,
    torch.float16: 1e-3,
    torch.float32: 1e-5,
}


13
14
15
16
17
18
19
20
21
22
BLOCK_N, BLOCK_K = 64, 128
factor_for_scale = 1e-3
fp8_max, fp8_min = 400, -400


def SiluAndMul(x: torch.Tensor) -> torch.Tensor:
    d = x.shape[-1] // 2
    return F.silu(x[..., :d]) * x[..., d:]


23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
def per_token_quant_int8(x):
    x = x.float()
    absmax = x.abs().max(dim=-1).values
    absmax = absmax.clamp_min(1e-10).unsqueeze(-1)
    scale_x = absmax / 127
    x_q = x.mul(127 / absmax)
    x_q = torch.round(x_q).to(torch.int8)

    return x_q, scale_x


def convert_weight(weight, scale_block_size, A_dtype):
    N, K = weight.size()
    fp8_max = 448.0
    scale_block_size_N, scale_block_size_K = scale_block_size  # (128, 128)

    pad_N = (scale_block_size_N - (N % scale_block_size_N)) % scale_block_size_N
    pad_K = (scale_block_size_K - (K % scale_block_size_K)) % scale_block_size_K

    if pad_N > 0 or pad_K > 0:
        weight = torch.nn.functional.pad(weight, (0, pad_K, 0, pad_N))

    weight_blocks = weight.view(
        math.ceil(N / scale_block_size_N),
        scale_block_size_N,
        math.ceil(K / scale_block_size_K),
        scale_block_size_K,
    )  # (8, 128, 8, 128)
    weight_blocks = weight_blocks.permute(0, 2, 1, 3).contiguous()  # (8, 8, 128, 128)

    # Step 2: compute per-block max abs values → scale
    abs_max = weight_blocks.abs().amax(dim=(-2, -1), keepdim=True)  # (8, 8, 1, 1)
    scales = abs_max / fp8_max
    scales = torch.where(
        scales == 0, torch.ones_like(scales), scales
    )  # avoid division by zero

    q_fp8 = (weight_blocks / scales).to(torch.float8_e4m3fn)
    q_fp8_reshape = q_fp8.permute(0, 2, 1, 3).contiguous()

    if pad_N > 0 or pad_K > 0:
        q_fp8_reshape = q_fp8_reshape.view(N + pad_N, K + pad_K)
        q_fp8_reshape = q_fp8_reshape[:N, :K].contiguous()
    else:
        q_fp8_reshape = q_fp8_reshape.view(N, K)

    dq_weight = q_fp8.float() * scales
    dq_weight = dq_weight.permute(0, 2, 1, 3).contiguous()  # (8, 128, 8, 128)

    if pad_N > 0 or pad_K > 0:
        w_dq = dq_weight.view(N + pad_N, K + pad_K).to(A_dtype)
        w_dq = w_dq[:N, :K].contiguous()
    else:
        w_dq = dq_weight.view(N, K).to(A_dtype)

    scales = scales.view(
        math.ceil(N / scale_block_size_N), math.ceil(K / scale_block_size_K)
    )

    return q_fp8_reshape, scales, w_dq


def native_w8a8_per_token_matmul(A, B, As, Bs, bias, output_dtype=torch.bfloat16):
    """Matrix multiplication function that supports per-token input quantization and per-column weight quantization"""
    A = A.to(torch.float32)
    B = B.to(torch.float32)

    assert A.shape[-1] == B.shape[-1], "Dimension mismatch"
    assert B.ndim == 2 and B.is_contiguous(), "B must be a 2D contiguous tensor"

    # Reshape input
    M = A.numel() // A.shape[-1]
    B = B.t()  # Transpose weight matrix
    N, K = B.shape
    origin_C_shape = A.shape[:-1] + (K,)
    A = A.reshape(M, N)

    # As is per-token [M, 1], Bs is per-column [1, K]
    C = torch.matmul(A, B)  # [M, K]
    C = As * C * Bs.view(1, -1)  # Broadcast per-column scale

    if bias is not None:
        C.add_(bias.view(1, -1))

    return C.reshape(origin_C_shape).to(output_dtype)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150


def torch_naive_moe(a, w1, w2, b, routed_scaling_factor):

    ic1 = torch.matmul(a, w1.transpose(0, 1))
    ic2 = SiluAndMul(ic1)
    ic3 = torch.matmul(ic2, w2.transpose(0, 1))

    return ic3 + b * routed_scaling_factor


def torch_w8a8_per_column_moe(a, w1_q, w2_q, w1_s, w2_s, b, routed_scaling_factor):

    # Perform per-token quantization
    a_q, a_s = per_token_quant_int8(a)

    ic1 = native_w8a8_per_token_matmul(
        a_q, w1_q, a_s, w1_s, bias=None, output_dtype=torch.float32
    )
    ic2 = SiluAndMul(ic1)

    a1_q, a1_s = per_token_quant_int8(ic2)
    ic3 = native_w8a8_per_token_matmul(
        a1_q, w2_q, a1_s, w2_s, bias=None, output_dtype=torch.float32
    )

    return ic3 + b * routed_scaling_factor


def scaled_weight(weight, scales):
    E, N, K = weight.shape
    weight_block = (
        weight.view(E, N // BLOCK_N, BLOCK_N, K // BLOCK_K, BLOCK_K)
        .permute(0, 1, 3, 2, 4)
        .float()
        .contiguous()
    )
    return (
        (weight_block * scales.view(E, N // BLOCK_N, K // BLOCK_K, 1, 1))
        .permute(0, 1, 3, 2, 4)
        .contiguous()
        .view(E, N, K)
    )