pipeline.rs 36.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
//! Pipeline stages for gRPC router request processing
//!
//! This module defines the core pipeline abstraction and individual processing stages
//! that transform a RequestContext through its lifecycle.

use async_trait::async_trait;
use axum::response::{IntoResponse, Response};
use tracing::{debug, error, warn};

use super::context::*;
use super::processing;
use super::streaming;
use super::utils;
14
use crate::core::{ConnectionMode, Worker, WorkerRegistry, WorkerType};
15
16
use crate::grpc_client::proto;
use crate::policies::PolicyRegistry;
17
18
use crate::protocols::spec::{ChatCompletionRequest, GenerateRequest, InputIds};
use crate::reasoning_parser::ParserFactory as ReasoningParserFactory;
19
use crate::tokenizer::traits::Tokenizer;
20
use crate::tool_parser::ParserFactory as ToolParserFactory;
21
use proto::DisaggregatedParams;
22
23
use rand::Rng;
use std::sync::Arc;
24
use std::time::{Instant, SystemTime, UNIX_EPOCH};
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
use uuid::Uuid;

// ============================================================================
// Pipeline Trait
// ============================================================================

/// Trait for pipeline stages that process requests
#[async_trait]
pub trait PipelineStage: Send + Sync {
    /// Execute this stage, mutating the context
    ///
    /// Returns:
    /// - `Ok(None)` - Continue to next stage
    /// - `Ok(Some(response))` - Pipeline complete, return this response (e.g., streaming)
    /// - `Err(response)` - Error occurred, return this error response
    async fn execute(&self, ctx: &mut RequestContext) -> Result<Option<Response>, Response>;

    /// Stage name for logging
    fn name(&self) -> &'static str;
}

// ============================================================================
// Stage 1: Preparation
// ============================================================================

/// Preparation stage: Filter tools, process messages, tokenize, build constraints
pub struct PreparationStage;

#[async_trait]
impl PipelineStage for PreparationStage {
    async fn execute(&self, ctx: &mut RequestContext) -> Result<Option<Response>, Response> {
56
57
58
59
60
61
62
63
64
65
66
        // Clone Arc before match to avoid borrow checker issues
        // (matching borrows ctx, but prepare_* methods need mutable borrow)
        // Arc clone is cheap (8 bytes) - avoids full request clone (15KB-200KB)
        let is_chat = matches!(&ctx.input.request_type, RequestType::Chat(_));

        if is_chat {
            let request_arc = ctx.chat_request_arc();
            self.prepare_chat(ctx, &request_arc).await?;
        } else {
            let request_arc = ctx.generate_request_arc();
            self.prepare_generate(ctx, &request_arc).await?;
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        }

        Ok(None)
    }

    fn name(&self) -> &'static str {
        "Preparation"
    }
}

impl PreparationStage {
    async fn prepare_chat(
        &self,
        ctx: &mut RequestContext,
        request: &ChatCompletionRequest,
    ) -> Result<(), Response> {
        // Step 1: Filter tools if needed
        let body_ref = utils::filter_tools_for_request(request);

        // Step 2: Process messages and apply chat template
        let processed_messages =
            match utils::process_chat_messages(&body_ref, &*ctx.components.tokenizer) {
                Ok(msgs) => msgs,
                Err(e) => {
                    return Err(utils::bad_request_error(e));
                }
            };

        // Step 3: Tokenize the processed text
        let encoding = match ctx.components.tokenizer.encode(&processed_messages.text) {
            Ok(encoding) => encoding,
            Err(e) => {
                return Err(utils::internal_error_message(format!(
                    "Tokenization failed: {}",
                    e
                )));
            }
        };

        let token_ids = encoding.token_ids().to_vec();

        // Step 4: Build tool constraints if needed
109
110
111
112
113
114
115
        let tool_call_constraint = if let Some(tools) = body_ref.tools.as_ref() {
            utils::generate_tool_constraints(tools, &request.tool_choice, &request.model).map_err(
                |e| utils::bad_request_error(format!("Invalid tool configuration: {}", e)),
            )?
        } else {
            None
        };
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

        // Step 5: Create stop sequence decoder (build once, reuse in non-stream)
        let stop_decoder = utils::create_stop_decoder(
            &ctx.components.tokenizer,
            request.stop.as_ref(),
            request.stop_token_ids.as_ref(),
            request.skip_special_tokens,
            request.no_stop_trim,
        );

        // Store results in context
        ctx.state.preparation = Some(PreparationOutput {
            original_text: Some(processed_messages.text.clone()),
            token_ids,
            processed_messages: Some(processed_messages),
            tool_constraints: tool_call_constraint,
            filtered_request: if matches!(body_ref, std::borrow::Cow::Owned(_)) {
                Some(body_ref.into_owned())
            } else {
                None
            },
        });

        // Store stop decoder for reuse in response processing
        ctx.state.response.stop_decoder = Some(stop_decoder);

        Ok(())
    }

    async fn prepare_generate(
        &self,
        ctx: &mut RequestContext,
        request: &GenerateRequest,
    ) -> Result<(), Response> {
        // Resolve input (text, prompt, or input_ids)
        let (original_text, token_ids) = match self.resolve_generate_input(ctx, request) {
            Ok(res) => res,
            Err(msg) => {
                return Err(utils::bad_request_error(msg));
            }
        };

        // Create stop sequence decoder for generate requests
        let params = request.sampling_params.as_ref();
        let stop_decoder = utils::create_stop_decoder(
            &ctx.components.tokenizer,
            params.and_then(|p| p.stop.as_ref()),
            params.and_then(|p| p.stop_token_ids.as_ref()),
            params.and_then(|p| p.skip_special_tokens).unwrap_or(true),
            params.and_then(|p| p.no_stop_trim).unwrap_or(false),
        );

        ctx.state.preparation = Some(PreparationOutput {
            original_text,
            token_ids,
            processed_messages: None,
            tool_constraints: None,
            filtered_request: None,
        });

        // Store stop decoder
        ctx.state.response.stop_decoder = Some(stop_decoder);

        Ok(())
    }

    fn resolve_generate_input(
        &self,
        ctx: &RequestContext,
        request: &GenerateRequest,
    ) -> Result<(Option<String>, Vec<u32>), String> {
        if let Some(text) = &request.text {
            return self
                .tokenize_single_text(&ctx.components.tokenizer, text)
                .map(|(original, ids)| (Some(original), ids));
        }

        // Handle input_ids - validate and convert
        if let Some(input_ids) = &request.input_ids {
            return match input_ids {
                InputIds::Single(ids) => ids
                    .iter()
                    .map(|&id| u32::try_from(id))
                    .collect::<Result<Vec<u32>, _>>()
                    .map(|converted| (None, converted))
                    .map_err(|_| "input_ids must be non-negative".to_string()),
                InputIds::Batch(_) => {
                    Err("Batch input_ids are not supported over gRPC generate yet".to_string())
                }
            };
        }

        Err("Either `text` or `input_ids` must be provided".to_string())
    }

    fn tokenize_single_text(
        &self,
213
        tokenizer: &Arc<dyn Tokenizer>,
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        text: &str,
    ) -> Result<(String, Vec<u32>), String> {
        let encoding = tokenizer
            .encode(text)
            .map_err(|e| format!("Tokenization failed: {}", e))?;
        Ok((text.to_string(), encoding.token_ids().to_vec()))
    }
}

// ============================================================================
// Stage 2: Worker Selection
// ============================================================================

/// Worker selection stage: Select appropriate worker(s) based on routing mode
pub struct WorkerSelectionStage {
    worker_registry: Arc<WorkerRegistry>,
    policy_registry: Arc<PolicyRegistry>,
    mode: WorkerSelectionMode,
}

pub enum WorkerSelectionMode {
    /// Regular mode: select single worker
    Regular,
    /// PD mode: select prefill + decode workers
    PrefillDecode,
}

impl WorkerSelectionStage {
    pub fn new(
        worker_registry: Arc<WorkerRegistry>,
        policy_registry: Arc<PolicyRegistry>,
        mode: WorkerSelectionMode,
    ) -> Self {
        Self {
            worker_registry,
            policy_registry,
            mode,
        }
    }
}

#[async_trait]
impl PipelineStage for WorkerSelectionStage {
    async fn execute(&self, ctx: &mut RequestContext) -> Result<Option<Response>, Response> {
        let prep = ctx
            .state
            .preparation
            .as_ref()
            .ok_or_else(|| utils::internal_error_static("Preparation stage not completed"))?;

        let text = prep.original_text.as_deref();

        let workers = match self.mode {
            WorkerSelectionMode::Regular => {
                match self.select_single_worker(ctx.input.model_id.as_deref(), text) {
                    Some(w) => WorkerSelection::Single { worker: w },
                    None => {
                        return Err(utils::service_unavailable_error(format!(
                            "No available workers for model: {:?}",
                            ctx.input.model_id
                        )));
                    }
                }
            }
            WorkerSelectionMode::PrefillDecode => {
                match self.select_pd_pair(ctx.input.model_id.as_deref(), text) {
                    Some((prefill, decode)) => WorkerSelection::Dual { prefill, decode },
                    None => {
                        return Err(utils::service_unavailable_error(format!(
                            "No available PD worker pairs for model: {:?}",
                            ctx.input.model_id
                        )));
                    }
                }
            }
        };

        ctx.state.workers = Some(workers);
        Ok(None)
    }

    fn name(&self) -> &'static str {
        "WorkerSelection"
    }
}

impl WorkerSelectionStage {
    fn select_single_worker(
        &self,
        model_id: Option<&str>,
        text: Option<&str>,
305
    ) -> Option<Arc<dyn Worker>> {
306
307
308
309
310
311
312
313
314
        // Get workers for the specified model, filtered by connection mode
        let workers = self.worker_registry.get_workers_filtered(
            model_id,
            Some(WorkerType::Regular),
            Some(ConnectionMode::Grpc { port: None }),
            false, // get all workers, we'll filter by is_available() next
        );

        // Filter by availability (health + circuit breaker)
315
        let available: Vec<Arc<dyn Worker>> = workers
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
            .iter()
            .filter(|w| w.is_available())
            .cloned()
            .collect();

        if available.is_empty() {
            return None;
        }

        // Get the appropriate policy for this model
        let policy = match model_id {
            Some(model) => self.policy_registry.get_policy_or_default(model),
            None => self.policy_registry.get_default_policy(),
        };

        // Select worker using the policy
        let idx = policy.select_worker(&available, text)?;
        Some(available[idx].clone())
    }

    fn select_pd_pair(
        &self,
        model_id: Option<&str>,
        text: Option<&str>,
340
    ) -> Option<(Arc<dyn Worker>, Arc<dyn Worker>)> {
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
        // Get prefill workers - use None for WorkerType filter to get all types,
        // then filter manually (since Prefill is a struct variant)
        let all_workers = self.worker_registry.get_workers_filtered(
            model_id,
            None, // Get all types
            Some(ConnectionMode::Grpc { port: None }),
            false,
        );

        let prefill_workers: Vec<_> = all_workers
            .iter()
            .filter(|w| matches!(w.metadata().worker_type, WorkerType::Prefill { .. }))
            .cloned()
            .collect();

        let available_prefill: Vec<_> = prefill_workers
            .iter()
            .filter(|w| w.is_available())
            .cloned()
            .collect();

        if available_prefill.is_empty() {
            warn!("No available prefill workers");
            return None;
        }

        // Get decode workers from the same all_workers list
        let decode_workers: Vec<_> = all_workers
            .iter()
            .filter(|w| matches!(w.metadata().worker_type, WorkerType::Decode))
            .cloned()
            .collect();

        let available_decode: Vec<_> = decode_workers
            .iter()
            .filter(|w| w.is_available())
            .cloned()
            .collect();

        if available_decode.is_empty() {
            warn!("No available decode workers");
            return None;
        }

        // Select using policies
        let policy = match model_id {
            Some(model) => self.policy_registry.get_policy_or_default(model),
            None => self.policy_registry.get_default_policy(),
        };

        let prefill_idx = policy.select_worker(&available_prefill, text)?;
        let decode_idx = policy.select_worker(&available_decode, text)?;

        Some((
            available_prefill[prefill_idx].clone(),
            available_decode[decode_idx].clone(),
        ))
    }
}

// ============================================================================
// Stage 3: Client Acquisition
// ============================================================================

/// Client acquisition stage: Get gRPC clients from selected workers
pub struct ClientAcquisitionStage;

#[async_trait]
impl PipelineStage for ClientAcquisitionStage {
    async fn execute(&self, ctx: &mut RequestContext) -> Result<Option<Response>, Response> {
        let workers = ctx
            .state
            .workers
            .as_ref()
            .ok_or_else(|| utils::internal_error_static("Worker selection not completed"))?;

        let clients = match workers {
            WorkerSelection::Single { worker } => {
                let client = utils::get_grpc_client_from_worker(worker).await?;
                ClientSelection::Single { client }
            }
            WorkerSelection::Dual { prefill, decode } => {
                let prefill_client = utils::get_grpc_client_from_worker(prefill).await?;
                let decode_client = utils::get_grpc_client_from_worker(decode).await?;
                ClientSelection::Dual {
                    prefill: prefill_client,
                    decode: decode_client,
                }
            }
        };

        ctx.state.clients = Some(clients);
        Ok(None)
    }

    fn name(&self) -> &'static str {
        "ClientAcquisition"
    }
}

// ============================================================================
// Stage 4: Request Building
// ============================================================================

/// Request building stage: Build proto GenerateRequest
pub struct RequestBuildingStage {
    inject_pd_metadata: bool,
}

impl RequestBuildingStage {
    pub fn new(inject_pd_metadata: bool) -> Self {
        Self { inject_pd_metadata }
    }
}

#[async_trait]
impl PipelineStage for RequestBuildingStage {
    async fn execute(&self, ctx: &mut RequestContext) -> Result<Option<Response>, Response> {
        let prep = ctx
            .state
            .preparation
            .as_ref()
            .ok_or_else(|| utils::internal_error_static("Preparation not completed"))?;

        let clients = ctx
            .state
            .clients
            .as_ref()
            .ok_or_else(|| utils::internal_error_static("Client acquisition not completed"))?;

        // Get client for building request (use prefill client if PD mode)
        let builder_client = match clients {
            ClientSelection::Single { client } => client,
            ClientSelection::Dual { prefill, .. } => prefill,
        };

        let mut proto_request = match &ctx.input.request_type {
            RequestType::Chat(request) => {
                let request_id = format!("chatcmpl-{}", Uuid::new_v4());
                let body_ref = prep.filtered_request.as_ref().unwrap_or(request);

                builder_client
                    .build_generate_request(
                        request_id,
                        body_ref,
                        prep.processed_messages.as_ref().unwrap().text.clone(),
                        prep.token_ids.clone(),
                        prep.processed_messages
                            .as_ref()
                            .unwrap()
                            .multimodal_inputs
                            .clone(),
                        prep.tool_constraints.clone(),
                    )
                    .map_err(|e| {
                        utils::bad_request_error(format!("Invalid request parameters: {}", e))
                    })?
            }
            RequestType::Generate(request) => {
                let request_id = request
                    .rid
                    .clone()
                    .unwrap_or_else(|| format!("gen-{}", Uuid::new_v4()));

                builder_client
                    .build_plain_generate_request(
                        request_id,
                        request,
                        prep.original_text.clone(),
                        prep.token_ids.clone(),
                    )
                    .map_err(utils::bad_request_error)?
            }
        };

        // Inject PD metadata if needed
        if self.inject_pd_metadata {
            if let WorkerSelection::Dual { prefill, .. } = ctx.state.workers.as_ref().unwrap() {
                self.inject_bootstrap_metadata(&mut proto_request, prefill);
            }
        }

        ctx.state.proto_request = Some(proto_request);
        Ok(None)
    }

    fn name(&self) -> &'static str {
        "RequestBuilding"
    }
}

impl RequestBuildingStage {
    fn inject_bootstrap_metadata(
        &self,
        request: &mut proto::GenerateRequest,
536
        prefill_worker: &Arc<dyn Worker>,
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
    ) {
        let hostname = prefill_worker.bootstrap_host();
        let bootstrap_port = prefill_worker.bootstrap_port().unwrap_or(8998);

        // Generate room ID for bootstrap
        let room_id = rand::rng().random_range(0..i32::MAX);

        // Create DisaggregatedParams
        let disagg_params = DisaggregatedParams {
            bootstrap_host: hostname.to_string(),
            bootstrap_port: bootstrap_port as i32,
            bootstrap_room: room_id,
        };

        // Inject metadata directly into request
        request.disaggregated_params = Some(disagg_params);

        debug!(
            "Injected bootstrap metadata: host={}, port={}, room={}",
            hostname, bootstrap_port, room_id
        );
    }
}

// ============================================================================
// Stage 5: Dispatch Metadata
// ============================================================================

/// Dispatch metadata stage: Prepare metadata for dispatch
pub struct DispatchMetadataStage;

#[async_trait]
impl PipelineStage for DispatchMetadataStage {
    async fn execute(&self, ctx: &mut RequestContext) -> Result<Option<Response>, Response> {
        let proto_request = ctx
            .state
            .proto_request
            .as_ref()
            .ok_or_else(|| utils::internal_error_static("Proto request not built"))?;

        let request_id = proto_request.request_id.clone();
        let model = match &ctx.input.request_type {
            RequestType::Chat(req) => req.model.clone(),
            RequestType::Generate(_req) => {
                // Generate requests don't have a model field
                // Use model_id from input or default
                ctx.input
                    .model_id
                    .clone()
                    .unwrap_or_else(|| "default".to_string())
            }
        };

        let weight_version = ctx
            .state
            .workers
            .as_ref()
            .map(|w| match w {
                WorkerSelection::Single { worker } => worker,
                WorkerSelection::Dual { decode, .. } => decode,
            })
            .and_then(|w| w.metadata().labels.get("weight_version").cloned())
            .unwrap_or_else(|| "default".to_string());

        let created = SystemTime::now()
            .duration_since(UNIX_EPOCH)
            .unwrap_or_default()
            .as_secs();

        ctx.state.dispatch = Some(DispatchMetadata {
            request_id,
            model,
            created,
            weight_version: Some(weight_version),
            is_streaming: ctx.is_streaming(),
        });

        Ok(None)
    }

    fn name(&self) -> &'static str {
        "DispatchMetadata"
    }
}

// ============================================================================
// Stage 6: Request Execution
// ============================================================================

/// Request execution stage: Execute gRPC requests (single or dual dispatch)
pub struct RequestExecutionStage {
    mode: ExecutionMode,
}

pub enum ExecutionMode {
    /// Regular mode: single worker execution
    Single,
    /// PD mode: dual dispatch to prefill + decode workers
    DualDispatch,
}

impl RequestExecutionStage {
    pub fn new(mode: ExecutionMode) -> Self {
        Self { mode }
    }
}

#[async_trait]
impl PipelineStage for RequestExecutionStage {
    async fn execute(&self, ctx: &mut RequestContext) -> Result<Option<Response>, Response> {
        let proto_request = ctx
            .state
            .proto_request
            .take()
            .ok_or_else(|| utils::internal_error_static("Proto request not built"))?;

        let clients = ctx
            .state
            .clients
            .as_mut()
            .ok_or_else(|| utils::internal_error_static("Client acquisition not completed"))?;

        let result = match self.mode {
            ExecutionMode::Single => self.execute_single(proto_request, clients).await?,
            ExecutionMode::DualDispatch => {
                self.execute_dual_dispatch(proto_request, clients).await?
            }
        };

        // Store result in context for ResponseProcessingStage
        ctx.state.response.execution_result = Some(result);
        Ok(None)
    }

    fn name(&self) -> &'static str {
        "RequestExecution"
    }
}

impl RequestExecutionStage {
    async fn execute_single(
        &self,
        proto_request: proto::GenerateRequest,
        clients: &mut ClientSelection,
    ) -> Result<ExecutionResult, Response> {
        let client = clients
            .single_mut()
            .ok_or_else(|| utils::internal_error_static("Expected single client but got dual"))?;

        let stream = client.generate(proto_request).await.map_err(|e| {
            utils::internal_error_message(format!("Failed to start generation: {}", e))
        })?;

        Ok(ExecutionResult::Single { stream })
    }

    async fn execute_dual_dispatch(
        &self,
        proto_request: proto::GenerateRequest,
        clients: &mut ClientSelection,
    ) -> Result<ExecutionResult, Response> {
        let (prefill_client, decode_client) = clients
            .dual_mut()
            .ok_or_else(|| utils::internal_error_static("Expected dual clients but got single"))?;

        let prefill_request = proto_request.clone();
        let decode_request = proto_request;

        let (prefill_result, decode_result) = tokio::join!(
            prefill_client.generate(prefill_request),
            decode_client.generate(decode_request)
        );

        // Handle prefill result
        let prefill_stream = match prefill_result {
            Ok(s) => s,
            Err(e) => {
                return Err(utils::internal_error_message(format!(
                    "Prefill worker failed to start: {}",
                    e
                )));
            }
        };

        // Handle decode result
        let decode_stream = match decode_result {
            Ok(s) => s,
            Err(e) => {
                return Err(utils::internal_error_message(format!(
                    "Decode worker failed to start: {}",
                    e
                )));
            }
        };

        Ok(ExecutionResult::Dual {
            prefill: prefill_stream,
            decode: Box::new(decode_stream),
        })
    }
}

// ============================================================================
// Stage 7: Response Processing
// ============================================================================

/// Response processing stage: Handles both streaming and non-streaming responses
///
/// - For streaming: Spawns background task and returns SSE response (early exit)
/// - For non-streaming: Collects all responses and builds final ChatCompletionResponse
pub struct ResponseProcessingStage {
    processor: processing::ResponseProcessor,
    streaming_processor: Arc<streaming::StreamingProcessor>,
}

impl ResponseProcessingStage {
    pub fn new(
        processor: processing::ResponseProcessor,
        streaming_processor: Arc<streaming::StreamingProcessor>,
    ) -> Self {
        Self {
            processor,
            streaming_processor,
        }
    }
}

#[async_trait]
impl PipelineStage for ResponseProcessingStage {
    async fn execute(&self, ctx: &mut RequestContext) -> Result<Option<Response>, Response> {
        // Delegate to request-type specific processing
        match &ctx.input.request_type {
            RequestType::Chat(_) => return self.process_chat_response(ctx).await,
            RequestType::Generate(_) => return self.process_generate_response(ctx).await,
        }
    }

    fn name(&self) -> &'static str {
        "ResponseProcessing"
    }
}

impl ResponseProcessingStage {
    async fn process_chat_response(
        &self,
        ctx: &mut RequestContext,
    ) -> Result<Option<Response>, Response> {
        let is_streaming = ctx.is_streaming();

        // Extract execution result
        let execution_result = ctx
            .state
            .response
            .execution_result
            .take()
            .ok_or_else(|| utils::internal_error_static("No execution result"))?;

794
795
796
797
798
799
800
        // Get dispatch metadata (needed by both streaming and non-streaming)
        let dispatch = ctx
            .state
            .dispatch
            .as_ref()
            .ok_or_else(|| utils::internal_error_static("Dispatch metadata not set"))?
            .clone();
801

802
        if is_streaming {
803
804
805
806
            // Streaming: Use StreamingProcessor and return SSE response (done)
            return Ok(Some(
                self.streaming_processor.clone().process_streaming_response(
                    execution_result,
807
                    ctx.chat_request_arc(), // Cheap Arc clone (8 bytes)
808
                    dispatch,
809
810
811
812
                ),
            ));
        }

813
        // Non-streaming: Delegate to ResponseProcessor
814
815
816
817
818
        let request_logprobs = match &ctx.input.request_type {
            RequestType::Chat(req) => req.logprobs,
            _ => false,
        };

819
        let chat_request = ctx.chat_request_arc();
820

821
822
823
824
825
826
827
        let stop_decoder = ctx
            .state
            .response
            .stop_decoder
            .as_mut()
            .ok_or_else(|| utils::internal_error_static("Stop decoder not initialized"))?;

828
829
830
831
832
833
834
835
836
837
        let response = self
            .processor
            .process_non_streaming_chat_response(
                execution_result,
                chat_request,
                dispatch,
                stop_decoder,
                request_logprobs,
            )
            .await?;
838
839
840
841
842
843
844
845
846

        // Store the final response
        ctx.state.response.final_response = Some(FinalResponse::Chat(response));

        Ok(None)
    }

    async fn process_generate_response(
        &self,
847
        ctx: &mut RequestContext,
848
    ) -> Result<Option<Response>, Response> {
849
850
851
852
853
854
855
856
857
858
859
        let start_time = Instant::now();
        let is_streaming = ctx.is_streaming();

        // Extract execution result
        let execution_result = ctx
            .state
            .response
            .execution_result
            .take()
            .ok_or_else(|| utils::internal_error_static("No execution result"))?;

860
861
862
863
864
865
866
        // Get dispatch metadata (needed by both streaming and non-streaming)
        let dispatch = ctx
            .state
            .dispatch
            .as_ref()
            .ok_or_else(|| utils::internal_error_static("Dispatch metadata not set"))?
            .clone();
867

868
        if is_streaming {
869
870
871
872
            // Streaming: Use StreamingProcessor and return SSE response (done)
            return Ok(Some(
                self.streaming_processor.clone().process_streaming_generate(
                    execution_result,
873
                    ctx.generate_request_arc(), // Cheap Arc clone (8 bytes)
874
                    dispatch,
875
876
877
878
                ),
            ));
        }

879
        // Non-streaming: Delegate to ResponseProcessor
880
        let request_logprobs = ctx.generate_request().return_logprob;
881
        let generate_request = ctx.generate_request_arc();
882
883
884
885
886
887
888
889

        let stop_decoder = ctx
            .state
            .response
            .stop_decoder
            .as_mut()
            .ok_or_else(|| utils::internal_error_static("Stop decoder not initialized"))?;

890
891
892
893
894
895
896
897
898
899
900
        let result_array = self
            .processor
            .process_non_streaming_generate_response(
                execution_result,
                generate_request,
                dispatch,
                stop_decoder,
                request_logprobs,
                start_time,
            )
            .await?;
901
902
903
904
905

        // Store the final response
        ctx.state.response.final_response = Some(FinalResponse::Generate(result_array));

        Ok(None)
906
907
908
909
910
911
912
    }
}

// ============================================================================
// Pipeline Orchestrator
// ============================================================================

913
/// Generic request pipeline for all request types
914
915
916
917
///
/// Orchestrates all stages from request preparation to response delivery.
/// Configured differently for regular vs PD mode.
#[derive(Clone)]
918
pub struct RequestPipeline {
919
920
921
    stages: Arc<Vec<Box<dyn PipelineStage>>>,
}

922
impl RequestPipeline {
923
924
925
926
    /// Create a regular (single-worker) pipeline
    pub fn new_regular(
        worker_registry: Arc<WorkerRegistry>,
        policy_registry: Arc<PolicyRegistry>,
927
928
929
930
931
        tokenizer: Arc<dyn Tokenizer>,
        tool_parser_factory: ToolParserFactory,
        reasoning_parser_factory: ReasoningParserFactory,
        configured_tool_parser: Option<String>,
        configured_reasoning_parser: Option<String>,
932
    ) -> Self {
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
        // Create response processor
        let processor = processing::ResponseProcessor::new(
            tokenizer.clone(),
            tool_parser_factory.clone(),
            reasoning_parser_factory.clone(),
            configured_tool_parser.clone(),
            configured_reasoning_parser.clone(),
        );

        // Create streaming processor
        let streaming_processor = Arc::new(streaming::StreamingProcessor::new(
            tokenizer,
            tool_parser_factory,
            reasoning_parser_factory,
            configured_tool_parser,
            configured_reasoning_parser,
        ));

951
952
953
954
955
956
957
958
959
960
961
        let stages: Vec<Box<dyn PipelineStage>> = vec![
            Box::new(PreparationStage),
            Box::new(WorkerSelectionStage::new(
                worker_registry,
                policy_registry,
                WorkerSelectionMode::Regular,
            )),
            Box::new(ClientAcquisitionStage),
            Box::new(RequestBuildingStage::new(false)), // No PD metadata
            Box::new(DispatchMetadataStage),
            Box::new(RequestExecutionStage::new(ExecutionMode::Single)),
962
            Box::new(ResponseProcessingStage::new(processor, streaming_processor)),
963
964
965
966
967
968
969
970
971
972
973
        ];

        Self {
            stages: Arc::new(stages),
        }
    }

    /// Create a PD (prefill-decode) pipeline
    pub fn new_pd(
        worker_registry: Arc<WorkerRegistry>,
        policy_registry: Arc<PolicyRegistry>,
974
975
976
977
978
        tokenizer: Arc<dyn Tokenizer>,
        tool_parser_factory: ToolParserFactory,
        reasoning_parser_factory: ReasoningParserFactory,
        configured_tool_parser: Option<String>,
        configured_reasoning_parser: Option<String>,
979
    ) -> Self {
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
        // Create response processor
        let processor = processing::ResponseProcessor::new(
            tokenizer.clone(),
            tool_parser_factory.clone(),
            reasoning_parser_factory.clone(),
            configured_tool_parser.clone(),
            configured_reasoning_parser.clone(),
        );

        // Create streaming processor
        let streaming_processor = Arc::new(streaming::StreamingProcessor::new(
            tokenizer,
            tool_parser_factory,
            reasoning_parser_factory,
            configured_tool_parser,
            configured_reasoning_parser,
        ));

998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
        let stages: Vec<Box<dyn PipelineStage>> = vec![
            Box::new(PreparationStage),
            Box::new(WorkerSelectionStage::new(
                worker_registry,
                policy_registry,
                WorkerSelectionMode::PrefillDecode,
            )),
            Box::new(ClientAcquisitionStage),
            Box::new(RequestBuildingStage::new(true)), // Inject PD metadata
            Box::new(DispatchMetadataStage),
            Box::new(RequestExecutionStage::new(ExecutionMode::DualDispatch)),
1009
            Box::new(ResponseProcessingStage::new(processor, streaming_processor)),
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
        ];

        Self {
            stages: Arc::new(stages),
        }
    }

    /// Execute the complete pipeline for a chat request
    pub async fn execute_chat(
        &self,
1020
1021
        request: Arc<ChatCompletionRequest>,
        headers: Option<http::HeaderMap>,
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
        model_id: Option<String>,
        components: Arc<SharedComponents>,
    ) -> Response {
        let mut ctx = RequestContext::for_chat(request, headers, model_id, components);

        // Execute each stage in sequence
        for (idx, stage) in self.stages.iter().enumerate() {
            match stage.execute(&mut ctx).await {
                Ok(Some(response)) => {
                    // Stage completed successfully with a response (e.g., streaming)
                    return response;
                }
                Ok(None) => {
                    // Continue to next stage
                    continue;
                }
                Err(response) => {
                    // Error occurred
                    error!(
                        "Stage {} ({}) failed with status {}",
                        idx + 1,
                        stage.name(),
                        response.status()
                    );
                    return response;
                }
            }
        }

        // Extract final response
        match ctx.state.response.final_response {
            Some(FinalResponse::Chat(response)) => axum::Json(response).into_response(),
            Some(FinalResponse::Generate(_)) => {
                utils::internal_error_static("Internal error: wrong response type")
            }
            None => utils::internal_error_static("No response produced"),
        }
    }

    /// Execute the complete pipeline for a generate request
    pub async fn execute_generate(
        &self,
1064
1065
        request: Arc<GenerateRequest>,
        headers: Option<http::HeaderMap>,
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
        model_id: Option<String>,
        components: Arc<SharedComponents>,
    ) -> Response {
        let mut ctx = RequestContext::for_generate(request, headers, model_id, components);

        // Execute each stage in sequence
        for (idx, stage) in self.stages.iter().enumerate() {
            match stage.execute(&mut ctx).await {
                Ok(Some(response)) => {
                    // Stage completed successfully with a response (e.g., streaming)
                    return response;
                }
                Ok(None) => {
                    // Continue to next stage
                    continue;
                }
                Err(response) => {
                    // Error occurred
                    error!(
                        "Stage {} ({}) failed with status {}",
                        idx + 1,
                        stage.name(),
                        response.status()
                    );
                    return response;
                }
            }
        }

        // Extract final response
        match ctx.state.response.final_response {
1097
            Some(FinalResponse::Generate(response)) => axum::Json(response).into_response(),
1098
1099
1100
1101
1102
1103
1104
            Some(FinalResponse::Chat(_)) => {
                utils::internal_error_static("Internal error: wrong response type")
            }
            None => utils::internal_error_static("No response produced"),
        }
    }
}