test_sparse_flash_attn.py 12.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import math
from typing import List, Optional, Tuple

import pytest
import torch
from einops import rearrange, repeat
from sgl_kernel.sparse_flash_attn import sparse_attn_func, sparse_attn_varlen_func


def ref_attn(
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
    attn_bias=None,
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
    softcap=0.0,
    upcast=True,
    reorder_ops=False,
    key_leftpad=None,
):
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k: (batch_size, seqlen_k, nheads_k, head_dim)
        v: (batch_size, seqlen_k, nheads_k, head_dim)
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
        causal: whether to apply causal masking
        window_size: (int, int), left and right window size
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
        reorder_ops: whether to change the order of operations (scaling k instead of scaling q, etc.)
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim)
        lse: (batch_size, nheads, seqlen_q)
    """
    if causal:
        window_size = (window_size[0], 0)
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
    seqlen_q, seqlen_k = q.shape[1], k.shape[1]
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
    d = q.shape[-1]
    if not reorder_ops:
        scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
    else:
        scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))

    lse_ref = scores.logsumexp(dim=-1)

    if softcap > 0:
        scores = scores / softcap
        scores = scores.tanh()
        scores = scores * softcap
    if key_padding_mask is not None:
        scores.masked_fill_(
            rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf")
        )
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            q.device,
            key_leftpad=key_leftpad,
        )
        scores.masked_fill_(local_mask, float("-inf"))
    if attn_bias is not None:
        scores = scores + attn_bias
    attention = torch.softmax(scores, dim=-1).to(v.dtype)
    # Some rows might be completely masked out so we fill them with zero instead of NaN
    if window_size[0] >= 0 or window_size[1] >= 0:
        attention = attention.masked_fill(
            torch.all(local_mask, dim=-1, keepdim=True), 0.0
        )
    # We want to mask here so that the attention matrix doesn't have any NaNs
    # Otherwise we'll get NaN in dV
    if query_padding_mask is not None:
        attention = attention.masked_fill(
            rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0
        )
    dropout_scaling = 1.0 / (1 - dropout_p)
    # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
    # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    if dropout_mask is not None:
        attention_drop = attention.masked_fill(~dropout_mask, 0.0)
    else:
        attention_drop = attention
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
    if query_padding_mask is not None:
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)

    return output.to(dtype=dtype_og), lse_ref


def ref_paged_attn(
    query: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    query_lens: List[int],
    kv_lens: List[int],
    block_tables: torch.Tensor,
    scale: float,
    sliding_window: Optional[int] = None,
    soft_cap: Optional[float] = None,
) -> torch.Tensor:
    num_seqs = len(query_lens)
    block_tables = block_tables.cpu().numpy()
    _, block_size, num_kv_heads, head_size = key_cache.shape

    outputs: List[torch.Tensor] = []
    start_idx = 0
    for i in range(num_seqs):
        query_len = query_lens[i]
        kv_len = kv_lens[i]
        # clone to avoid clobbering the query tensor
        q = query[start_idx : start_idx + query_len].clone()
        q *= scale

        num_kv_blocks = (kv_len + block_size - 1) // block_size
        block_indices = block_tables[i, :num_kv_blocks]

        k = key_cache[block_indices].view(-1, num_kv_heads, head_size)
        k = k[:kv_len]
        v = value_cache[block_indices].view(-1, num_kv_heads, head_size)
        v = v[:kv_len]

        if q.shape[1] != k.shape[1]:
            k = torch.repeat_interleave(k, q.shape[1] // k.shape[1], dim=1)
            v = torch.repeat_interleave(v, q.shape[1] // v.shape[1], dim=1)
        attn = torch.einsum("qhd,khd->hqk", q, k).float()
        empty_mask = torch.ones(query_len, kv_len)
        mask = torch.triu(empty_mask, diagonal=kv_len - query_len + 1).bool()
        if sliding_window is not None:
            sliding_window_mask = (
                torch.triu(
                    empty_mask, diagonal=kv_len - (query_len + sliding_window) + 1
                )
                .bool()
                .logical_not()
            )
            mask |= sliding_window_mask
        if soft_cap is not None:
            attn = soft_cap * torch.tanh(attn / soft_cap)
        attn.masked_fill_(mask, float("-inf"))
        attn = torch.softmax(attn, dim=-1).to(v.dtype)
        out = torch.einsum("hqk,khd->qhd", attn, v)

        outputs.append(out)
        start_idx += query_len

    return torch.cat(outputs, dim=0)


@pytest.mark.parametrize("batch_size", [1, 2])
@pytest.mark.parametrize(
    "seq_lens",
    [
        (1, 1),
        (1, 1024),
        (1, 2048),
        (1023, 2049),
        (1023, 1023),
        (32, 32),
        (65, 65),
        (129, 129),
    ],
)
@pytest.mark.parametrize("num_heads", [1, 2, 4])
@pytest.mark.parametrize("head_size", [128])
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("NNZ_S", [0, 1, 2, 3, 7, 15, 32])
@torch.inference_mode()
def test_sparse_attention(
    batch_size,
    seq_lens,
    num_heads,
    head_size,
    dtype,
    NNZ_S,
) -> None:
    torch.set_default_device("cuda")
    torch.cuda.manual_seed_all(0)
    block_size_M = 64
    block_size_N = 64
    seqlen_q, seqlen_k = seq_lens
    q = torch.randn(
        batch_size, seqlen_q, num_heads, head_size, dtype=dtype, requires_grad=False
    )
    k = torch.randn(
        batch_size, seqlen_k, num_heads, head_size, dtype=dtype, requires_grad=False
    )
    v = torch.randn(
        batch_size, seqlen_k, num_heads, head_size, dtype=dtype, requires_grad=False
    )
    NUM_ROWS = (seqlen_q + block_size_M - 1) // block_size_M
    if NNZ_S * block_size_N > seqlen_k:
        return
    NNZ_V = seqlen_k - NNZ_S * block_size_N
    block_count = torch.tensor(
        [NNZ_S] * batch_size * NUM_ROWS * num_heads, dtype=torch.int32
    ).reshape(batch_size, num_heads, NUM_ROWS)
    column_count = torch.tensor(
        [NNZ_V] * batch_size * NUM_ROWS * num_heads, dtype=torch.int32
    ).reshape(batch_size, num_heads, NUM_ROWS)
    block_offset = torch.tensor(
        [[i * block_size_N for i in range(NNZ_S)]] * batch_size * NUM_ROWS * num_heads,
        dtype=torch.int32,
    ).reshape(batch_size, num_heads, NUM_ROWS, NNZ_S)
    column_index = torch.tensor(
        [[NNZ_S * block_size_N + i for i in range(NNZ_V)]]
        * batch_size
        * NUM_ROWS
        * num_heads,
        dtype=torch.int32,
    ).reshape(batch_size, num_heads, NUM_ROWS, NNZ_V)
    out, lse = sparse_attn_func(
        q,
        k,
        v,
        block_count,
        block_offset,
        column_count,
        column_index,
        return_softmax_lse=True,
    )

    ref_out, ref_lse = ref_attn(q, k, v)

    torch.testing.assert_close(
        out, ref_out, atol=2e-2, rtol=1e-2
    ), f"{torch.max(torch.abs(out - ref_out))}"
    torch.testing.assert_close(
        lse, ref_lse, atol=2e-2, rtol=1e-2
    ), f"{torch.max(torch.abs(lse - ref_lse))}"


# @pytest.mark.parametrize("seq_lens", [[(1024, 1328)],
#                                     [(1024, 1328), (1, 2048)],
#                                     [(1025, 1328), (2, 2048)],
#                                     [(1025, 2049), (2, 1281)],
#                                     ])
# @pytest.mark.parametrize("head_size", [128])
# @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
# @torch.inference_mode()
# def test_sparse_attention_varlen(
#         seq_lens,
#         head_size,
#         dtype,
# ) -> None:
#     torch.set_default_device("cuda")
#     torch.cuda.manual_seed_all(0)
#     block_size_M = 64
#     block_size_N = 64
#     num_seqs = len(seq_lens)
#     query_lens = [x[0] for x in seq_lens]
#     kv_lens = [x[1] for x in seq_lens]
#     num_heads = 1
#     query = torch.randn(sum(query_lens),
#                         num_heads,
#                         head_size,
#                         dtype=dtype)
#     key = torch.randn(sum(kv_lens),
#                     num_heads,
#                     head_size,
#                     dtype=dtype)
#     value = torch.randn_like(key)
#     cu_query_lens = torch.tensor([0] + query_lens,
#                                 dtype=torch.int32).cumsum(dim=0,
#                                                         dtype=torch.int32)
#     cu_kv_lens = torch.tensor([0] + kv_lens,
#                                 dtype=torch.int32).cumsum(dim=0,
#                                                         dtype=torch.int32)
#     max_query_len = max(query_lens)
#     max_kv_len = max(kv_lens)

#     NUM_ROWS = (max_query_len + block_size_M - 1) // block_size_M
#     NNZ_S = 20
#     NNZ_V = 2048
#     batch_size = len(query_lens)

#     block_counts = []
#     column_counts = []
#     block_offsets = []
#     column_indices = []
#     for b in range(batch_size):
#         block_counts.append(torch.tensor([NNZ_S] * NUM_ROWS * num_heads, dtype=torch.int32).reshape(num_heads, NUM_ROWS))
#         columns = kv_lens[b] - NNZ_S * block_size_N
#         column_counts.append(torch.tensor([columns] * NUM_ROWS * num_heads, dtype=torch.int32).reshape(num_heads, NUM_ROWS))
#         block_offsets.append(torch.tensor([[i * block_size_N for i in range(NNZ_S)]] * NUM_ROWS * num_heads, dtype=torch.int32).reshape(num_heads, NUM_ROWS, NNZ_S))
#         column_indices.append(torch.tensor([[NNZ_S * block_size_N + i for i in range(NNZ_V)]] * NUM_ROWS * num_heads, dtype=torch.int32).reshape(num_heads, NUM_ROWS, NNZ_V))
#     block_count = torch.concat(block_counts).reshape(batch_size, num_heads, NUM_ROWS)
#     column_count = torch.concat(column_counts).reshape(batch_size, num_heads, NUM_ROWS)
#     block_offset = torch.concat(block_offsets).reshape(batch_size, num_heads, NUM_ROWS, NNZ_S)
#     column_index = torch.concat(column_indices).reshape(batch_size, num_heads, NUM_ROWS, NNZ_V)
#     out, lse = sparse_attn_varlen_func(
#         query,
#         key,
#         value,
#         block_count,
#         block_offset,
#         column_count,
#         column_index,
#         cu_seqlens_q=cu_query_lens,
#         cu_seqlens_k=cu_kv_lens,
#         max_seqlen_q=max_query_len,
#         max_seqlen_k=max_kv_len,
#         return_softmax_lse=True,
#     )

#     max_num_blocks_per_seq = (max_kv_len + 2048 - 1) // 2048
#     block_tables = torch.randint(0,
#                                  2048,
#                                  (len(query_lens), max_num_blocks_per_seq),
#                                  dtype=torch.int32)
#     scale = head_size**-0.5

#     ref_out, ref_lse, _ = ref_paged_attn(
#         query,
#         key,
#         value,
#         query_lens=query_lens,
#         kv_lens=kv_lens,
#         block_tables=block_tables,
#         scale=scale
#     )

#     torch.testing.assert_close(out, ref_out, atol=2e-2, rtol=1e-2), \
#         f"{torch.max(torch.abs(out - ref_out))}"
#     torch.testing.assert_close(lse, ref_lse, atol=2e-2, rtol=1e-2), \
#         f"{torch.max(torch.abs(lse - ref_lse))}"

if __name__ == "__main__":
    pytest.main([__file__])