openai_api_completions.ipynb 22.4 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
7
    "# OpenAI APIs - Completions\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
9
10
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/api-reference).\n",
11
    "\n",
12
    "This tutorial covers the following popular APIs:\n",
Chayenne's avatar
Chayenne committed
13
14
15
16
    "\n",
    "- `chat/completions`\n",
    "- `completions`\n",
    "- `batches`\n",
17
18
    "\n",
    "Check out other tutorials to learn about vision APIs for vision-language models and embedding APIs for embedding models."
Chayenne's avatar
Chayenne committed
19
20
21
22
23
24
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
25
    "## Launch A Server\n",
Chayenne's avatar
Chayenne committed
26
    "\n",
27
    "This code block is equivalent to executing \n",
Chayenne's avatar
Chayenne committed
28
    "\n",
29
30
31
32
33
34
    "```bash\n",
    "python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
    "--port 30000 --host 0.0.0.0\n",
    "```\n",
    "\n",
    "in your terminal and wait for the server to be ready."
Chayenne's avatar
Chayenne committed
35
36
37
38
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
39
   "execution_count": null,
40
   "metadata": {},
Chayenne's avatar
Chayenne committed
41
   "outputs": [],
Chayenne's avatar
Chayenne committed
42
   "source": [
43
44
45
46
47
48
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
Chayenne's avatar
Chayenne committed
49
50
    "\n",
    "server_process = execute_shell_command(\n",
Chayenne's avatar
Chayenne committed
51
    "    \"python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --port 30000 --host 0.0.0.0\"\n",
Chayenne's avatar
Chayenne committed
52
53
    ")\n",
    "\n",
54
    "wait_for_server(\"http://localhost:30000\")"
Chayenne's avatar
Chayenne committed
55
56
   ]
  },
57
58
59
60
61
62
63
64
65
66
67
68
69
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chat Completions\n",
    "\n",
    "### Usage\n",
    "\n",
    "The server fully implements the OpenAI API.\n",
    "It will automatically apply the chat template specified in the Hugging Face tokenizer, if one is available.\n",
    "You can also specify a custom chat template with `--chat-template` when launching the server."
   ]
  },
Chayenne's avatar
Chayenne committed
70
71
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
72
   "execution_count": null,
Chayenne's avatar
Chayenne committed
73
74
75
76
77
78
79
80
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:45:16.624550Z",
     "iopub.status.busy": "2024-11-01T02:45:16.624258Z",
     "iopub.status.idle": "2024-11-01T02:45:18.087455Z",
     "shell.execute_reply": "2024-11-01T02:45:18.086450Z"
    }
   },
Chayenne's avatar
Chayenne committed
81
   "outputs": [],
Chayenne's avatar
Chayenne committed
82
83
84
85
86
87
88
89
90
91
92
93
94
   "source": [
    "import openai\n",
    "\n",
    "client = openai.Client(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
95
96
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
97
98
99
100
101
102
103
104
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
105
    "The chat completions API accepts OpenAI Chat Completions API's parameters. Refer to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat/create) for more details.\n",
Chayenne's avatar
Chayenne committed
106
107
108
109
110
111
    "\n",
    "Here is an example of a detailed chat completion request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
112
   "execution_count": null,
Chayenne's avatar
Chayenne committed
113
114
115
116
117
118
119
120
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:45:18.090228Z",
     "iopub.status.busy": "2024-11-01T02:45:18.090071Z",
     "iopub.status.idle": "2024-11-01T02:45:21.193221Z",
     "shell.execute_reply": "2024-11-01T02:45:21.192539Z"
    }
   },
Chayenne's avatar
Chayenne committed
121
   "outputs": [],
Chayenne's avatar
Chayenne committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": \"You are a knowledgeable historian who provides concise responses.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"Tell me about ancient Rome\"},\n",
    "        {\n",
    "            \"role\": \"assistant\",\n",
    "            \"content\": \"Ancient Rome was a civilization centered in Italy.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"What were their major achievements?\"},\n",
    "    ],\n",
    "    temperature=0.3,  # Lower temperature for more focused responses\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
138
    "    max_tokens=128,  # Reasonable length for a concise response\n",
Chayenne's avatar
Chayenne committed
139
140
141
142
143
144
145
    "    top_p=0.95,  # Slightly higher for better fluency\n",
    "    presence_penalty=0.2,  # Mild penalty to avoid repetition\n",
    "    frequency_penalty=0.2,  # Mild penalty for more natural language\n",
    "    n=1,  # Single response is usually more stable\n",
    "    seed=42,  # Keep for reproducibility\n",
    ")\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
146
147
148
149
150
151
152
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
153
    "Streaming mode is also supported."
Lianmin Zheng's avatar
Lianmin Zheng committed
154
155
156
157
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
158
   "execution_count": null,
Chayenne's avatar
Chayenne committed
159
160
161
162
163
164
165
166
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:45:21.195226Z",
     "iopub.status.busy": "2024-11-01T02:45:21.194680Z",
     "iopub.status.idle": "2024-11-01T02:45:21.675473Z",
     "shell.execute_reply": "2024-11-01T02:45:21.675050Z"
    }
   },
Chayenne's avatar
Chayenne committed
167
   "outputs": [],
Lianmin Zheng's avatar
Lianmin Zheng committed
168
169
170
171
172
173
174
175
176
   "source": [
    "stream = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[{\"role\": \"user\", \"content\": \"Say this is a test\"}],\n",
    "    stream=True,\n",
    ")\n",
    "for chunk in stream:\n",
    "    if chunk.choices[0].delta.content is not None:\n",
    "        print(chunk.choices[0].delta.content, end=\"\")"
Chayenne's avatar
Chayenne committed
177
178
179
180
181
182
183
184
185
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Completions\n",
    "\n",
    "### Usage\n",
186
    "Completions API is similar to Chat Completions API, but without the `messages` parameter or chat templates."
Chayenne's avatar
Chayenne committed
187
188
189
190
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
191
   "execution_count": null,
Chayenne's avatar
Chayenne committed
192
193
194
195
196
197
198
199
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:45:21.676813Z",
     "iopub.status.busy": "2024-11-01T02:45:21.676665Z",
     "iopub.status.idle": "2024-11-01T02:45:23.182104Z",
     "shell.execute_reply": "2024-11-01T02:45:23.181695Z"
    }
   },
Chayenne's avatar
Chayenne committed
200
   "outputs": [],
Chayenne's avatar
Chayenne committed
201
202
203
204
205
206
207
208
209
   "source": [
    "response = client.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    prompt=\"List 3 countries and their capitals.\",\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    "    n=1,\n",
    "    stop=None,\n",
    ")\n",
210
211
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
212
213
214
215
216
217
218
219
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
220
    "The completions API accepts OpenAI Completions API's parameters.  Refer to [OpenAI Completions API](https://platform.openai.com/docs/api-reference/completions/create) for more details.\n",
Chayenne's avatar
Chayenne committed
221
222
223
224
225
226
    "\n",
    "Here is an example of a detailed completions request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
227
   "execution_count": null,
Chayenne's avatar
Chayenne committed
228
229
230
231
232
233
234
235
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:45:23.186337Z",
     "iopub.status.busy": "2024-11-01T02:45:23.186189Z",
     "iopub.status.idle": "2024-11-01T02:45:26.769744Z",
     "shell.execute_reply": "2024-11-01T02:45:26.769299Z"
    }
   },
Chayenne's avatar
Chayenne committed
236
   "outputs": [],
Chayenne's avatar
Chayenne committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
   "source": [
    "response = client.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    prompt=\"Write a short story about a space explorer.\",\n",
    "    temperature=0.7,  # Moderate temperature for creative writing\n",
    "    max_tokens=150,  # Longer response for a story\n",
    "    top_p=0.9,  # Balanced diversity in word choice\n",
    "    stop=[\"\\n\\n\", \"THE END\"],  # Multiple stop sequences\n",
    "    presence_penalty=0.3,  # Encourage novel elements\n",
    "    frequency_penalty=0.3,  # Reduce repetitive phrases\n",
    "    n=1,  # Generate one completion\n",
    "    seed=123,  # For reproducible results\n",
    ")\n",
    "\n",
251
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
252
253
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Structured decoding (JSON, Regex)\n",
    "You can specify a JSON schema or a regular expression to constrain the model output. The model output will be guaranteed to follow the given constraints.\n",
    "\n",
    "### JSON"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "\n",
    "json_schema = json.dumps(\n",
    "    {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"name\": {\"type\": \"string\", \"pattern\": \"^[\\\\w]+$\"},\n",
    "            \"population\": {\"type\": \"integer\"},\n",
    "        },\n",
    "        \"required\": [\"name\", \"population\"],\n",
    "    }\n",
    ")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"Give me the information of the capital of France in the JSON format.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=128,\n",
    "    response_format={\n",
    "        \"type\": \"json_schema\",\n",
    "        \"json_schema\": {\"name\": \"foo\", \"schema\": json.loads(json_schema)},\n",
    "    },\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Regular expression"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"What is the capital of France?\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=128,\n",
    "    extra_body={\"regex\": \"(Paris|London)\"},\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
Chayenne's avatar
Chayenne committed
325
326
327
328
329
330
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Batches\n",
    "\n",
331
    "Batches API for chat completions and completions are also supported. You can upload your requests in `jsonl` files, create a batch job, and retrieve the results when the batch job is completed (which takes longer but costs less).\n",
Chayenne's avatar
Chayenne committed
332
333
334
335
336
337
338
339
340
341
342
343
    "\n",
    "The batches APIs are:\n",
    "\n",
    "- `batches`\n",
    "- `batches/{batch_id}/cancel`\n",
    "- `batches/{batch_id}`\n",
    "\n",
    "Here is an example of a batch job for chat completions, completions are similar.\n"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
344
   "execution_count": null,
Chayenne's avatar
Chayenne committed
345
346
347
348
349
350
351
352
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:45:26.772016Z",
     "iopub.status.busy": "2024-11-01T02:45:26.771868Z",
     "iopub.status.idle": "2024-11-01T02:45:26.794225Z",
     "shell.execute_reply": "2024-11-01T02:45:26.793811Z"
    }
   },
Chayenne's avatar
Chayenne committed
353
   "outputs": [],
Chayenne's avatar
Chayenne committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = [\n",
    "    {\n",
    "        \"custom_id\": \"request-1\",\n",
    "        \"method\": \"POST\",\n",
    "        \"url\": \"/chat/completions\",\n",
    "        \"body\": {\n",
    "            \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "            \"messages\": [\n",
    "                {\"role\": \"user\", \"content\": \"Tell me a joke about programming\"}\n",
    "            ],\n",
    "            \"max_tokens\": 50,\n",
    "        },\n",
    "    },\n",
    "    {\n",
    "        \"custom_id\": \"request-2\",\n",
    "        \"method\": \"POST\",\n",
    "        \"url\": \"/chat/completions\",\n",
    "        \"body\": {\n",
    "            \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "            \"messages\": [{\"role\": \"user\", \"content\": \"What is Python?\"}],\n",
    "            \"max_tokens\": 50,\n",
    "        },\n",
    "    },\n",
    "]\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    file_response = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_response = client.batches.create(\n",
    "    input_file_id=file_response.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
401
    "print_highlight(f\"Batch job created with ID: {batch_response.id}\")"
Chayenne's avatar
Chayenne committed
402
403
404
405
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
406
   "execution_count": null,
Chayenne's avatar
Chayenne committed
407
408
409
410
411
412
413
414
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:45:26.796422Z",
     "iopub.status.busy": "2024-11-01T02:45:26.796273Z",
     "iopub.status.idle": "2024-11-01T02:45:29.810471Z",
     "shell.execute_reply": "2024-11-01T02:45:29.810041Z"
    }
   },
Chayenne's avatar
Chayenne committed
415
   "outputs": [],
Chayenne's avatar
Chayenne committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
   "source": [
    "while batch_response.status not in [\"completed\", \"failed\", \"cancelled\"]:\n",
    "    time.sleep(3)\n",
    "    print(f\"Batch job status: {batch_response.status}...trying again in 3 seconds...\")\n",
    "    batch_response = client.batches.retrieve(batch_response.id)\n",
    "\n",
    "if batch_response.status == \"completed\":\n",
    "    print(\"Batch job completed successfully!\")\n",
    "    print(f\"Request counts: {batch_response.request_counts}\")\n",
    "\n",
    "    result_file_id = batch_response.output_file_id\n",
    "    file_response = client.files.content(result_file_id)\n",
    "    result_content = file_response.read().decode(\"utf-8\")\n",
    "\n",
    "    results = [\n",
    "        json.loads(line) for line in result_content.split(\"\\n\") if line.strip() != \"\"\n",
    "    ]\n",
    "\n",
    "    for result in results:\n",
435
436
    "        print_highlight(f\"Request {result['custom_id']}:\")\n",
    "        print_highlight(f\"Response: {result['response']}\")\n",
Chayenne's avatar
Chayenne committed
437
    "\n",
438
    "    print_highlight(\"Cleaning up files...\")\n",
Chayenne's avatar
Chayenne committed
439
440
441
    "    # Only delete the result file ID since file_response is just content\n",
    "    client.files.delete(result_file_id)\n",
    "else:\n",
442
    "    print_highlight(f\"Batch job failed with status: {batch_response.status}\")\n",
Chayenne's avatar
Chayenne committed
443
    "    if hasattr(batch_response, \"errors\"):\n",
444
    "        print_highlight(f\"Errors: {batch_response.errors}\")"
Chayenne's avatar
Chayenne committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It takes a while to complete the batch job. You can use these two APIs to retrieve the batch job status or cancel the batch job.\n",
    "\n",
    "1. `batches/{batch_id}`: Retrieve the batch job status.\n",
    "2. `batches/{batch_id}/cancel`: Cancel the batch job.\n",
    "\n",
    "Here is an example to check the batch job status."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
461
   "execution_count": null,
Chayenne's avatar
Chayenne committed
462
463
464
465
466
467
468
469
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:45:29.812339Z",
     "iopub.status.busy": "2024-11-01T02:45:29.812198Z",
     "iopub.status.idle": "2024-11-01T02:45:54.851243Z",
     "shell.execute_reply": "2024-11-01T02:45:54.850668Z"
    }
   },
Chayenne's avatar
Chayenne committed
470
   "outputs": [],
Chayenne's avatar
Chayenne committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = []\n",
    "for i in range(100):\n",
    "    requests.append(\n",
    "        {\n",
    "            \"custom_id\": f\"request-{i}\",\n",
    "            \"method\": \"POST\",\n",
    "            \"url\": \"/chat/completions\",\n",
    "            \"body\": {\n",
    "                \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "                \"messages\": [\n",
    "                    {\n",
    "                        \"role\": \"system\",\n",
    "                        \"content\": f\"{i}: You are a helpful AI assistant\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": \"Write a detailed story about topic. Make it very long.\",\n",
    "                    },\n",
    "                ],\n",
    "                \"max_tokens\": 500,\n",
    "            },\n",
    "        }\n",
    "    )\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    uploaded_file = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_job = client.batches.create(\n",
    "    input_file_id=uploaded_file.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
516
517
    "print_highlight(f\"Created batch job with ID: {batch_job.id}\")\n",
    "print_highlight(f\"Initial status: {batch_job.status}\")\n",
Chayenne's avatar
Chayenne committed
518
519
520
521
522
523
    "\n",
    "time.sleep(10)\n",
    "\n",
    "max_checks = 5\n",
    "for i in range(max_checks):\n",
    "    batch_details = client.batches.retrieve(batch_id=batch_job.id)\n",
524
525
526
527
528
529
530
    "\n",
    "    print_highlight(\n",
    "        f\"Batch job details (check {i+1} / {max_checks}) // ID: {batch_details.id} // Status: {batch_details.status} // Created at: {batch_details.created_at} // Input file ID: {batch_details.input_file_id} // Output file ID: {batch_details.output_file_id}\"\n",
    "    )\n",
    "    print_highlight(\n",
    "        f\"<strong>Request counts: Total: {batch_details.request_counts.total} // Completed: {batch_details.request_counts.completed} // Failed: {batch_details.request_counts.failed}</strong>\"\n",
    "    )\n",
Chayenne's avatar
Chayenne committed
531
532
533
534
535
536
537
538
539
540
541
542
543
    "\n",
    "    time.sleep(3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is an example to cancel a batch job."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
544
   "execution_count": null,
Chayenne's avatar
Chayenne committed
545
546
547
548
549
550
551
552
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:45:54.854018Z",
     "iopub.status.busy": "2024-11-01T02:45:54.853851Z",
     "iopub.status.idle": "2024-11-01T02:46:07.893199Z",
     "shell.execute_reply": "2024-11-01T02:46:07.892310Z"
    }
   },
Chayenne's avatar
Chayenne committed
553
   "outputs": [],
Chayenne's avatar
Chayenne committed
554
555
556
557
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
Chayenne's avatar
Chayenne committed
558
    "import os\n",
Chayenne's avatar
Chayenne committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = []\n",
    "for i in range(500):\n",
    "    requests.append(\n",
    "        {\n",
    "            \"custom_id\": f\"request-{i}\",\n",
    "            \"method\": \"POST\",\n",
    "            \"url\": \"/chat/completions\",\n",
    "            \"body\": {\n",
    "                \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "                \"messages\": [\n",
    "                    {\n",
    "                        \"role\": \"system\",\n",
    "                        \"content\": f\"{i}: You are a helpful AI assistant\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": \"Write a detailed story about topic. Make it very long.\",\n",
    "                    },\n",
    "                ],\n",
    "                \"max_tokens\": 500,\n",
    "            },\n",
    "        }\n",
    "    )\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    uploaded_file = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_job = client.batches.create(\n",
    "    input_file_id=uploaded_file.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
600
601
    "print_highlight(f\"Created batch job with ID: {batch_job.id}\")\n",
    "print_highlight(f\"Initial status: {batch_job.status}\")\n",
Chayenne's avatar
Chayenne committed
602
603
604
605
606
    "\n",
    "time.sleep(10)\n",
    "\n",
    "try:\n",
    "    cancelled_job = client.batches.cancel(batch_id=batch_job.id)\n",
607
    "    print_highlight(f\"Cancellation initiated. Status: {cancelled_job.status}\")\n",
Chayenne's avatar
Chayenne committed
608
609
610
611
612
613
    "    assert cancelled_job.status == \"cancelling\"\n",
    "\n",
    "    # Monitor the cancellation process\n",
    "    while cancelled_job.status not in [\"failed\", \"cancelled\"]:\n",
    "        time.sleep(3)\n",
    "        cancelled_job = client.batches.retrieve(batch_job.id)\n",
614
    "        print_highlight(f\"Current status: {cancelled_job.status}\")\n",
Chayenne's avatar
Chayenne committed
615
616
617
    "\n",
    "    # Verify final status\n",
    "    assert cancelled_job.status == \"cancelled\"\n",
618
    "    print_highlight(\"Batch job successfully cancelled\")\n",
Chayenne's avatar
Chayenne committed
619
620
    "\n",
    "except Exception as e:\n",
621
    "    print_highlight(f\"Error during cancellation: {e}\")\n",
Chayenne's avatar
Chayenne committed
622
623
624
625
626
627
    "    raise e\n",
    "\n",
    "finally:\n",
    "    try:\n",
    "        del_response = client.files.delete(uploaded_file.id)\n",
    "        if del_response.deleted:\n",
628
    "            print_highlight(\"Successfully cleaned up input file\")\n",
Chayenne's avatar
Chayenne committed
629
630
631
    "        if os.path.exists(input_file_path):\n",
    "            os.remove(input_file_path)\n",
    "            print_highlight(\"Successfully deleted local batch_requests.jsonl file\")\n",
Chayenne's avatar
Chayenne committed
632
    "    except Exception as e:\n",
633
    "        print_highlight(f\"Error cleaning up: {e}\")\n",
Chayenne's avatar
Chayenne committed
634
635
636
637
638
    "        raise e"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
639
   "execution_count": 11,
Chayenne's avatar
Chayenne committed
640
641
642
643
644
645
646
647
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:46:07.896114Z",
     "iopub.status.busy": "2024-11-01T02:46:07.895820Z",
     "iopub.status.idle": "2024-11-01T02:46:09.365287Z",
     "shell.execute_reply": "2024-11-01T02:46:09.364705Z"
    }
   },
Lianmin Zheng's avatar
Lianmin Zheng committed
648
   "outputs": [],
Chayenne's avatar
Chayenne committed
649
650
651
652
653
654
655
   "source": [
    "terminate_process(server_process)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
Lianmin Zheng's avatar
Lianmin Zheng committed
656
   "display_name": "Python 3 (ipykernel)",
Chayenne's avatar
Chayenne committed
657
658
   "language": "python",
   "name": "python3"
Chayenne's avatar
Chayenne committed
659
660
661
662
663
664
665
666
667
668
669
670
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
Chayenne's avatar
Chayenne committed
671
672
673
674
675
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}