torch_extension.cc 9.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
15
#include <ATen/core/dispatch/Dispatcher.h>
16
#include <torch/all.h>
17
18
#include <torch/library.h>

19
#include "sgl_kernel_ops.h"
20

21
TORCH_LIBRARY_EXPAND(sgl_kernel, m) {
22
23
24
  /*
   * From csrc/allreduce
   */
25
26
27
28
29
30
31
32
33
34
  m.def(
      "init_custom_ar(int rank_id, int world_size, Tensor rank_data, int[] buffers, int[] tmp_result_buffers, int[] "
      "barrier_in, int[] barrier_out) -> int");
  m.impl("init_custom_ar", torch::kCUDA, &init_custom_ar);

  m.def("dispose", &dispose);

  m.def("all_reduce(int fa, Tensor inp, Tensor! out) -> ()");
  m.impl("all_reduce", torch::kCUDA, &all_reduce);

35
36
  m.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta);
  m.def("register_graph_buffers", &register_graph_buffers);
37

38
39
40
  /*
   * From csrc/attention
   */
41
42
43
  m.def(
      "lightning_attention_decode(Tensor q, Tensor k, Tensor v, Tensor past_kv, Tensor slope, Tensor! output, Tensor! "
      "new_kv) -> ()");
44
45
  m.impl("lightning_attention_decode", torch::kCUDA, &lightning_attention_decode);

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
  /*
   * From csrc/elementwise
   */
  m.def("rmsnorm(Tensor! output, Tensor input, Tensor weight, float eps, int cuda_stream) -> ()");
  m.impl("rmsnorm", torch::kCUDA, &rmsnorm);

  m.def("fused_add_rmsnorm(Tensor! input, Tensor! residual, Tensor weight, float eps) -> ()");
  m.impl("fused_add_rmsnorm", torch::kCUDA, &sgl_fused_add_rmsnorm);

  m.def("gemma_rmsnorm(Tensor! output, Tensor input, Tensor weight, float eps, int cuda_stream) -> ()");
  m.impl("gemma_rmsnorm", torch::kCUDA, &gemma_rmsnorm);

  m.def("gemma_fused_add_rmsnorm(Tensor! input, Tensor! residual, Tensor weight, float eps, int cuda_stream) -> ()");
  m.impl("gemma_fused_add_rmsnorm", torch::kCUDA, &gemma_fused_add_rmsnorm);

  m.def("silu_and_mul(Tensor! out, Tensor input, int cuda_stream) -> ()");
  m.impl("silu_and_mul", torch::kCUDA, &silu_and_mul);

  m.def("gelu_tanh_and_mul(Tensor! out, Tensor input, int cuda_stream) -> ()");
  m.impl("gelu_tanh_and_mul", torch::kCUDA, &gelu_tanh_and_mul);

  m.def("gelu_and_mul(Tensor! out, Tensor input, int cuda_stream) -> ()");
  m.impl("gelu_and_mul", torch::kCUDA, &gelu_and_mul);

70
71
72
73
74
  m.def(
      "apply_rope_pos_ids_cos_sin_cache(Tensor q, Tensor k, Tensor! q_rope, Tensor! k_rope, Tensor cos_sin_cache, "
      "Tensor pos_ids, bool interleave, int cuda_stream) -> ()");
  m.impl("apply_rope_pos_ids_cos_sin_cache", torch::kCUDA, &apply_rope_pos_ids_cos_sin_cache);

75
76
77
  /*
   * From csrc/gemm
   */
78
79
80
  m.def("awq_dequantize(Tensor qweight, Tensor scales, Tensor qzeros) -> Tensor");
  m.impl("awq_dequantize", torch::kCUDA, &awq_dequantize);

81
82
83
84
85
  m.def(
      "int8_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype, Tensor? "
      "bias) -> Tensor");
  m.impl("int8_scaled_mm", torch::kCUDA, &int8_scaled_mm);

86
87
88
89
90
  m.def(
      "fp8_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype, Tensor? "
      "bias) -> Tensor");
  m.impl("fp8_scaled_mm", torch::kCUDA, &fp8_scaled_mm);

91
92
93
94
95
  m.def(
      "fp8_blockwise_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype) -> "
      "Tensor");
  m.impl("fp8_blockwise_scaled_mm", torch::kCUDA, &fp8_blockwise_scaled_mm);

96
  m.def(
97
98
99
      "sgl_per_token_group_quant_fp8(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
      " float eps, float fp8_min, float fp8_max) -> ()");
  m.impl("sgl_per_token_group_quant_fp8", torch::kCUDA, &sgl_per_token_group_quant_fp8);
100

101
102
103
104
105
  m.def(
      "sgl_per_token_group_quant_int8(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
      " float eps, float int8_min, float int8_max) -> ()");
  m.impl("sgl_per_token_group_quant_int8", torch::kCUDA, &sgl_per_token_group_quant_int8);

106
107
108
  m.def("sgl_per_tensor_quant_fp8(Tensor input, Tensor output_q, Tensor output_s, bool is_static) -> ()");
  m.impl("sgl_per_tensor_quant_fp8", torch::kCUDA, &sgl_per_tensor_quant_fp8);

109
110
111
  m.def("sgl_per_token_quant_fp8(Tensor input, Tensor output_q, Tensor output_s) -> ()");
  m.impl("sgl_per_token_quant_fp8", torch::kCUDA, &sgl_per_token_quant_fp8);

112
113
114
115
  m.def(
      "cublas_grouped_gemm(Tensor[] inputs, Tensor[] weights, Tensor[] outputs,"
      " ScalarType out_dtype, int cublas_handle, int cuda_stream) -> ()");
  m.impl("cublas_grouped_gemm", torch::kCUDA, &cublas_grouped_gemm);
116

Trevor Morris's avatar
Trevor Morris committed
117
118
119
120
121
122
123
124
125
126
127
  m.def(
      "cutlass_scaled_fp4_mm(Tensor! out, Tensor a, Tensor b,"
      "                      Tensor block_scale_a, Tensor block_scale_b,"
      "                      Tensor alpha) -> ()");
  m.impl("cutlass_scaled_fp4_mm", torch::kCUDA, &cutlass_scaled_fp4_mm);

  m.def(
      "scaled_fp4_quant(Tensor! output, Tensor! input,"
      "                 Tensor! output_scale, Tensor! input_scale) -> ()");
  m.impl("scaled_fp4_quant", torch::kCUDA, &scaled_fp4_quant);

128
129
130
131
132
133
134
  /*
   * From csrc/moe
   */
  m.def(
      "moe_align_block_size(Tensor topk_ids, int num_experts, int block_size, Tensor! sorted_token_ids, Tensor! "
      "experts_ids, Tensor! num_tokens_post_pad, Tensor! token_cnts_buffer, Tensor! cumsum_buffer) -> ()");
  m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);
135

136
137
138
139
140
  m.def(
      "topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor! "
      "token_expert_indices, Tensor gating_output) -> ()");
  m.impl("topk_softmax", torch::kCUDA, &topk_softmax);

141
142
143
144
145
  m.def(
      "moe_fused_gate(Tensor input, Tensor bias, int num_expert_group, int topk_group, int topk) -> "
      "(Tensor[])");
  m.impl("moe_fused_gate", torch::kCUDA, &moe_fused_gate);

146
147
148
149
150
151
152
  /*
   * From csrc/speculative
   */
  m.def(
      "tree_speculative_sampling_target_only(Tensor! predicts, Tensor! accept_index, Tensor! accept_token_num, "
      "Tensor candidates, Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
      "Tensor uniform_samples, Tensor target_probs, Tensor draft_probs, "
153
      "float threshold_single, float threshold_acc, "
154
155
      "bool deterministic, int cuda_stream) -> ()");
  m.impl("tree_speculative_sampling_target_only", torch::kCUDA, &tree_speculative_sampling_target_only);
156

157
158
159
160
161
162
  m.def(
      "verify_tree_greedy(Tensor! predicts, Tensor! accept_index, Tensor! accept_token_num, "
      "Tensor candidates, Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
      "Tensor target_predict, int cuda_stream) -> ()");
  m.impl("verify_tree_greedy", torch::kCUDA, &verify_tree_greedy);

163
164
  m.def(
      "build_tree_kernel_efficient(Tensor parent_list, Tensor selected_index, Tensor verified_seq_len, "
165
166
      "Tensor! tree_mask, Tensor! positions, Tensor! retrive_index, Tensor! retrive_next_token, "
      "Tensor! retrive_next_sibling, int topk, int depth, int draft_token_num) -> ()");
167
  m.impl("build_tree_kernel_efficient", torch::kCUDA, &build_tree_kernel_efficient);
168

169
170
  m.def("segment_packbits(Tensor x, Tensor input_indptr, Tensor output_indptr, Tensor! y, int cuda_stream) -> ()");
  m.impl("segment_packbits", torch::kCUDA, &segment_packbits);
171

172
173
174
  /*
   * From FlashInfer
   */
175
176
177
178
179
180
181
182
183
184
185
  m.def(
      "bmm_fp8(Tensor A, Tensor B, Tensor! D, Tensor A_scale, Tensor B_scale, Tensor workspace_buffer, int "
      "cublas_handle, int cuda_stream) -> ()");
  m.impl("bmm_fp8", torch::kCUDA, &bmm_fp8);

  m.def(
      "min_p_sampling_from_probs(Tensor probs, Tensor uniform_samples, Tensor! samples, Tensor? maybe_min_p_arr, float "
      "min_p_val, bool deterministic, int cuda_stream) -> ()");
  m.impl("min_p_sampling_from_probs", torch::kCUDA, &min_p_sampling_from_probs);

  m.def(
186
      "top_k_renorm_probs(Tensor probs, Tensor! renorm_probs, Tensor? maybe_top_k_arr, int top_k_val, int "
187
      "cuda_stream) -> ()");
188
  m.impl("top_k_renorm_probs", torch::kCUDA, &top_k_renorm_probs);
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

  m.def(
      "top_p_renorm_probs(Tensor probs, Tensor! renorm_probs, Tensor? maybe_top_p_arr, float top_p_val, int "
      "cuda_stream) -> ()");
  m.impl("top_p_renorm_probs", torch::kCUDA, &top_p_renorm_probs);

  m.def(
      "top_k_top_p_sampling_from_probs(Tensor probs, Tensor uniform_samples, Tensor! samples, Tensor! success, Tensor? "
      "maybe_top_k_arr, float top_k_val, Tensor? maybe_top_p_arr, float top_p_val, bool deterministic, int "
      "cuda_stream) -> ()");
  m.impl("top_k_top_p_sampling_from_probs", torch::kCUDA, &top_k_top_p_sampling_from_probs);

  m.def(
      "top_p_sampling_from_probs(Tensor probs, Tensor uniform_samples, Tensor! samples, Tensor! success, Tensor? "
      "maybe_top_p_arr, float top_p_val, bool deterministic, int cuda_stream) -> ()");
  m.impl("top_p_sampling_from_probs", torch::kCUDA, &top_p_sampling_from_probs);
}

207
REGISTER_EXTENSION(common_ops)