parallel_state.py 50.5 KB
Newer Older
1
# Adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/distributed/parallel_state.py
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

# Copyright 2023 The vLLM team.
# Adapted from
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/parallel_state.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""vLLM distributed state.
It takes over the control of the distributed environment from PyTorch.
The typical workflow is:

- call `init_distributed_environment` to initialize the distributed environment.
- call `initialize_model_parallel` or `ensure_model_parallel_initialized` to
 initialize the model parallel groups.

- any code dealing with the distributed stuff

- call `destroy_model_parallel` to destroy the model parallel groups.
- call `destroy_distributed_environment` to destroy the distributed environment.

If you only need to use the distributed environment without model/pipeline
 parallelism, you can skip the model parallel initialization and destruction
 steps.
"""
import contextlib
import gc
import logging
import os
import pickle
import weakref
from collections import namedtuple
from contextlib import contextmanager, nullcontext
from dataclasses import dataclass
33
from datetime import timedelta
34
35
36
37
38
39
40
41
42
43
from multiprocessing import shared_memory
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from unittest.mock import patch

import torch
import torch.distributed
from torch.distributed import Backend, ProcessGroup

from sglang.srt.utils import (
    direct_register_custom_op,
44
    get_bool_env_var,
45
    is_cuda_alike,
46
    is_npu,
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    supports_custom_op,
)


@dataclass
class GraphCaptureContext:
    stream: torch.cuda.Stream


TensorMetadata = namedtuple("TensorMetadata", ["device", "dtype", "size"])


def _split_tensor_dict(
    tensor_dict: Dict[str, Union[torch.Tensor, Any]]
) -> Tuple[List[Tuple[str, Any]], List[torch.Tensor]]:
    """Split the tensor dictionary into two parts:
    1. A list of (key, value) pairs. If the value is a tensor, it is replaced
         by its metadata.
    2. A list of tensors.
    """
    metadata_list: List[Tuple[str, Any]] = []
    tensor_list: List[torch.Tensor] = []
    for key, value in tensor_dict.items():
        if isinstance(value, torch.Tensor):
            # Note: we cannot use `value.device` here,
            # because it contains not only the device type but also the device
            # index (e.g. "cuda:0"). We only need the device type.
            # receiving side will set the device index.
            device = value.device.type
            metadata_list.append(
                (key, TensorMetadata(device, value.dtype, value.size()))
            )
            tensor_list.append(value)
        else:
            metadata_list.append((key, value))
    return metadata_list, tensor_list


_group_name_counter: Dict[str, int] = {}


def _get_unique_name(name: str) -> str:
    """Get a unique name for the group.
    Example:
    _get_unique_name("tp") -> "tp:0"
    _get_unique_name("tp") -> "tp:1"
    """
    if name not in _group_name_counter:
        _group_name_counter[name] = 0
    newname = f"{name}:{_group_name_counter[name]}"
    _group_name_counter[name] += 1
    return newname


_groups: Dict[str, Callable[[], Optional["GroupCoordinator"]]] = {}


def _register_group(group: "GroupCoordinator") -> None:
    _groups[group.unique_name] = weakref.ref(group)


if supports_custom_op():

    def inplace_all_reduce(tensor: torch.Tensor, group_name: str) -> None:
        assert group_name in _groups, f"Group {group_name} is not found."
        group = _groups[group_name]()
        if group is None:
            raise ValueError(f"Group {group_name} is destroyed.")
        group._all_reduce_in_place(tensor)

    def inplace_all_reduce_fake(tensor: torch.Tensor, group_name: str) -> None:
        return

    direct_register_custom_op(
        op_name="inplace_all_reduce",
        op_func=inplace_all_reduce,
        mutates_args=["tensor"],
        fake_impl=inplace_all_reduce_fake,
    )

    def outplace_all_reduce(tensor: torch.Tensor, group_name: str) -> torch.Tensor:
        assert group_name in _groups, f"Group {group_name} is not found."
        group = _groups[group_name]()
        if group is None:
            raise ValueError(f"Group {group_name} is destroyed.")
        return group._all_reduce_out_place(tensor)

    def outplace_all_reduce_fake(tensor: torch.Tensor, group_name: str) -> torch.Tensor:
        return torch.empty_like(tensor)

    direct_register_custom_op(
        op_name="outplace_all_reduce",
        op_func=outplace_all_reduce,
        mutates_args=[],
        fake_impl=outplace_all_reduce_fake,
    )

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    def reg_all_gather_into_tensor(
        output: torch.Tensor, input: torch.Tensor, group_name: str
    ) -> None:
        assert group_name in _groups, f"Group {group_name} is not found."
        group = _groups[group_name]()
        if group is None:
            raise ValueError(f"Group {group_name} is destroyed.")
        group._all_gather_into_tensor(output, input)

    def reg_all_gather_into_tensor_fake(
        output: torch.Tensor, input: torch.Tensor, group_name: str
    ) -> None:
        pass

    direct_register_custom_op(
        op_name="reg_all_gather_into_tensor",
        op_func=reg_all_gather_into_tensor,
Ke Bao's avatar
Ke Bao committed
161
        mutates_args=["output"],
162
163
164
        fake_impl=reg_all_gather_into_tensor_fake,
    )

165
166
167
168
169
170
171
172
173

class GroupCoordinator:
    """
    PyTorch ProcessGroup wrapper for a group of processes.
    PyTorch ProcessGroup is bound to one specific communication backend,
        e.g. NCCL, Gloo, MPI, etc.
    GroupCoordinator takes charge of all the communication operations among
        the processes in the group. It can route the communication to
        a specific implementation (e.g. switch allreduce implementation
174
        based on the tensor size and cuda graph mode).
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    """

    # available attributes:
    rank: int  # global rank
    ranks: List[int]  # global ranks in the group
    world_size: int  # size of the group
    # difference between `local_rank` and `rank_in_group`:
    # if we have a group of size 4 across two nodes:
    # Process | Node | Rank | Local Rank | Rank in Group
    #   0     |   0  |  0   |     0      |       0
    #   1     |   0  |  1   |     1      |       1
    #   2     |   1  |  2   |     0      |       2
    #   3     |   1  |  3   |     1      |       3
    local_rank: int  # local rank used to assign devices
    rank_in_group: int  # rank inside the group
    cpu_group: ProcessGroup  # group for CPU communication
    device_group: ProcessGroup  # group for device communication
    use_pynccl: bool  # a hint of whether to use PyNccl
    use_custom_allreduce: bool  # a hint of whether to use CustomAllreduce
194
195
196
    use_message_queue_broadcaster: (
        bool  # a hint of whether to use message queue broadcaster
    )
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    # communicators are only created for world size > 1
    pynccl_comm: Optional[Any]  # PyNccl communicator
    ca_comm: Optional[Any]  # Custom allreduce communicator
    mq_broadcaster: Optional[Any]  # shared memory broadcaster

    def __init__(
        self,
        group_ranks: List[List[int]],
        local_rank: int,
        torch_distributed_backend: Union[str, Backend],
        use_pynccl: bool,
        use_custom_allreduce: bool,
        use_hpu_communicator: bool,
        use_xpu_communicator: bool,
211
        use_npu_communicator: bool,
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        use_message_queue_broadcaster: bool = False,
        group_name: Optional[str] = None,
    ):
        group_name = group_name or "anonymous"
        self.unique_name = _get_unique_name(group_name)
        _register_group(self)

        self.rank = torch.distributed.get_rank()
        self.local_rank = local_rank
        self.device_group = None
        self.cpu_group = None

        for ranks in group_ranks:
            device_group = torch.distributed.new_group(
                ranks, backend=torch_distributed_backend
            )
            # a group with `gloo` backend, to allow direct coordination between
            # processes through the CPU.
            cpu_group = torch.distributed.new_group(ranks, backend="gloo")
            if self.rank in ranks:
                self.ranks = ranks
                self.world_size = len(ranks)
                self.rank_in_group = ranks.index(self.rank)
                self.device_group = device_group
                self.cpu_group = cpu_group

        assert self.cpu_group is not None
        assert self.device_group is not None

        if is_cuda_alike():
            self.device = torch.device(f"cuda:{local_rank}")
        else:
            self.device = torch.device("cpu")

        self.use_pynccl = use_pynccl
        self.use_custom_allreduce = use_custom_allreduce
        self.use_hpu_communicator = use_hpu_communicator
        self.use_xpu_communicator = use_xpu_communicator
250
        self.use_npu_communicator = use_npu_communicator
251
        self.use_message_queue_broadcaster = use_message_queue_broadcaster
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

        # lazy import to avoid documentation build error
        from sglang.srt.distributed.device_communicators.custom_all_reduce import (
            CustomAllreduce,
        )
        from sglang.srt.distributed.device_communicators.pynccl import (
            PyNcclCommunicator,
        )

        self.pynccl_comm: Optional[PyNcclCommunicator] = None
        if use_pynccl and self.world_size > 1:
            self.pynccl_comm = PyNcclCommunicator(
                group=self.cpu_group,
                device=self.device,
            )

        self.ca_comm: Optional[CustomAllreduce] = None
        if use_custom_allreduce and self.world_size > 1:
            # Initialize a custom fast all-reduce implementation.
271
272
273
274
275
276
277
278
279
280
            try:
                self.ca_comm = CustomAllreduce(
                    group=self.cpu_group,
                    device=self.device,
                )
            except Exception as e:
                logger.warning(
                    f"Setup Custom allreduce failed with {e}. To silence this "
                    "warning, specify --disable-custom-all-reduce explicitly."
                )
281
282
283
284
285

        from sglang.srt.distributed.device_communicators.hpu_communicator import (
            HpuCommunicator,
        )

286
        self.hpu_communicator: Optional[HpuCommunicator] = None
287
288
289
290
291
292
293
        if use_hpu_communicator and self.world_size > 1:
            self.hpu_communicator = HpuCommunicator(group=self.device_group)

        from sglang.srt.distributed.device_communicators.xpu_communicator import (
            XpuCommunicator,
        )

294
        self.xpu_communicator: Optional[XpuCommunicator] = None
295
296
297
        if use_xpu_communicator and self.world_size > 1:
            self.xpu_communicator = XpuCommunicator(group=self.device_group)

298
299
300
301
302
303
304
305
        from sglang.srt.distributed.device_communicators.npu_communicator import (
            NpuCommunicator,
        )

        self.npu_communicator: Optional[NpuCommunicator] = None
        if use_npu_communicator and self.world_size > 1:
            self.npu_communicator = NpuCommunicator(group=self.device_group)

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
        from sglang.srt.distributed.device_communicators.shm_broadcast import (
            MessageQueue,
        )

        self.mq_broadcaster: Optional[MessageQueue] = None
        if use_message_queue_broadcaster and self.world_size > 1:
            self.mq_broadcaster = MessageQueue.create_from_process_group(
                self.cpu_group, 1 << 22, 6
            )

    @property
    def first_rank(self):
        """Return the global rank of the first process in the group"""
        return self.ranks[0]

    @property
    def last_rank(self):
        """Return the global rank of the last process in the group"""
        return self.ranks[-1]

    @property
    def is_first_rank(self):
        """Return whether the caller is the first process in the group"""
        return self.rank == self.first_rank

    @property
    def is_last_rank(self):
        """Return whether the caller is the last process in the group"""
        return self.rank == self.last_rank

    @property
    def next_rank(self):
        """Return the global rank of the process that follows the caller"""
        rank_in_group = self.rank_in_group
        world_size = self.world_size
        return self.ranks[(rank_in_group + 1) % world_size]

    @property
    def prev_rank(self):
        """Return the global rank of the process that precedes the caller"""
        rank_in_group = self.rank_in_group
        world_size = self.world_size
        return self.ranks[(rank_in_group - 1) % world_size]

    @contextmanager
    def graph_capture(
        self, graph_capture_context: Optional[GraphCaptureContext] = None
    ):
        if graph_capture_context is None:
            stream = torch.cuda.Stream()
            graph_capture_context = GraphCaptureContext(stream)
        else:
            stream = graph_capture_context.stream

        ca_comm = self.ca_comm
        maybe_ca_context = nullcontext() if ca_comm is None else ca_comm.capture()

        # ensure all initialization operations complete before attempting to
        # capture the graph on another stream
        curr_stream = torch.cuda.current_stream()
        if curr_stream != stream:
            stream.wait_stream(curr_stream)

        with torch.cuda.stream(stream), maybe_ca_context:
            # In graph mode, we have to be very careful about the collective
            # operations. The current status is:
            #     allreduce \ Mode   |  Eager  |  Graph  |
            # --------------------------------------------
            # custom allreduce       | enabled | enabled |
            # PyNccl                 | disabled| enabled |
            # torch.distributed      | enabled | disabled|
            #
            # Note that custom allreduce will have a runtime check, if the
            #  tensor size is too large, it will fallback to the next
            #  available option.
            # In summary: When using CUDA graph, we use
            #  either custom all-reduce kernel or pynccl. When not using
            #  CUDA graph, we use either custom all-reduce kernel or
            #  PyTorch NCCL. We always prioritize using custom all-reduce
            #  kernel but fall back to PyTorch or pynccl if it is
            #  disabled or not supported.
            pynccl_comm = self.pynccl_comm
            maybe_pynccl_context: Any
            if not pynccl_comm:
                maybe_pynccl_context = nullcontext()
            else:
                maybe_pynccl_context = pynccl_comm.change_state(
                    enable=True, stream=torch.cuda.current_stream()
                )
            with maybe_pynccl_context:
                yield graph_capture_context

    def all_reduce(self, input_: torch.Tensor) -> torch.Tensor:
        """
        User-facing all-reduce function before we actually call the
        all-reduce operation.

        We need this because Dynamo does not support passing an arbitrary
        object (`self` in this case) to a custom op. We need to pass the
         group name as a string, and then look up the group coordinator from
         the group name, dispatch the all-reduce operation to the group
         coordinator.

        In addition, PyTorch custom ops do not support mutation or returning
        a new tensor in the same op. So we need to figure out if the op is
        in-place or out-of-place ahead of time.
        """
        # Bypass the function if we are using only 1 GPU.
        if self.world_size == 1:
            return input_

        if input_.is_cpu:
            import intel_extension_for_pytorch as ipex

            ipex.distributed.all_reduce(input_, group=self.device_group)
            return input_

        if not supports_custom_op():
            self._all_reduce_in_place(input_)
            return input_

        if self.hpu_communicator is not None and not self.hpu_communicator.disabled:
            return self.hpu_communicator.all_reduce(input_)

        if self.xpu_communicator is not None and not self.xpu_communicator.disabled:
            return self.xpu_communicator.all_reduce(input_)

433
434
435
        if self.npu_communicator is not None and not self.npu_communicator.disabled:
            return self.npu_communicator.all_reduce(input_)

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
        if (
            self.ca_comm is not None
            and not self.ca_comm.disabled
            and self.ca_comm.should_custom_ar(input_)
        ):
            return torch.ops.sglang.outplace_all_reduce(
                input_, group_name=self.unique_name
            )
        else:
            torch.ops.sglang.inplace_all_reduce(input_, group_name=self.unique_name)
            return input_

    def _all_reduce_out_place(self, input_: torch.Tensor) -> torch.Tensor:
        ca_comm = self.ca_comm
        assert ca_comm is not None
        assert not ca_comm.disabled
        out = ca_comm.custom_all_reduce(input_)
        assert out is not None
        return out

    def _all_reduce_in_place(self, input_: torch.Tensor) -> None:
        pynccl_comm = self.pynccl_comm
        if pynccl_comm is not None and not pynccl_comm.disabled:
            pynccl_comm.all_reduce(input_)
        else:
            torch.distributed.all_reduce(input_, group=self.device_group)

463
464
465
466
467
468
469
470
471
    def reduce_scatter(
        self,
        output: torch.Tensor,
        input_list: List[torch.Tensor],
    ) -> None:
        # TODO(ch-wan): support other backends
        torch.distributed.reduce_scatter(output, input_list, group=self.device_group)
        return output

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    def _all_gather_into_tensor(self, output: torch.Tensor, input: torch.Tensor):
        pynccl_comm = self.pynccl_comm
        if pynccl_comm is not None and not pynccl_comm.disabled:
            pynccl_comm.all_gather(output, input)
        else:
            torch.distributed.all_gather_into_tensor(
                output, input, group=self.device_group
            )

    def all_gather_into_tensor(self, output: torch.Tensor, input: torch.Tensor):
        if not supports_custom_op():
            self._all_gather_into_tensor(output, input)
        else:
            torch.ops.sglang.reg_all_gather_into_tensor(
                output, input, group_name=self.unique_name
            )

489
490
491
492
493
494
    def all_gather(
        self,
        input_: torch.Tensor,
        dim: int = -1,
        tensor_list: List[torch.Tensor] = None,
    ) -> torch.Tensor:
495
496
497
498
        world_size = self.world_size
        # Bypass the function if we are using only 1 GPU.
        if world_size == 1:
            return input_
499
500
501
502
503
504
505

        if tensor_list is not None:
            # TODO(ch-wan): support other backends
            return torch.distributed.all_gather(
                tensor_list, input_, group=self.device_group
            )

506
507
508
509
510
511
512
513
514
        assert (
            -input_.dim() <= dim < input_.dim()
        ), f"Invalid dim ({dim}) for input tensor with shape {input_.size()}"

        # For HPUs, use HPU communicator.
        hpu_comm = self.hpu_communicator
        if hpu_comm is not None and not hpu_comm.disabled:
            return hpu_comm.all_gather(input_, dim)

515
516
517
518
519
        # For NPUs, use NPU communicator.
        npu_comm = self.npu_communicator
        if npu_comm is not None and not npu_comm.disabled:
            return npu_comm.all_gather(input_, dim)

520
521
522
523
524
525
526
527
528
529
530
531
532
        if dim < 0:
            # Convert negative dim to positive.
            dim += input_.dim()
        input_size = input_.size()
        # NOTE: we have to use concat-style all-gather here,
        # stack-style all-gather has compatibility issues with
        # torch.compile . see https://github.com/pytorch/pytorch/issues/138795
        output_size = (input_size[0] * world_size,) + input_size[1:]
        # Allocate output tensor.
        output_tensor = torch.empty(
            output_size, dtype=input_.dtype, device=input_.device
        )
        # All-gather.
533
        self.all_gather_into_tensor(output_tensor, input_)
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
        # Reshape
        output_tensor = output_tensor.reshape((world_size,) + input_size)
        output_tensor = output_tensor.movedim(0, dim)
        output_tensor = output_tensor.reshape(
            input_size[:dim] + (world_size * input_size[dim],) + input_size[dim + 1 :]
        )
        return output_tensor

    def gather(
        self, input_: torch.Tensor, dst: int = 0, dim: int = -1
    ) -> Optional[torch.Tensor]:
        """
        NOTE: We assume that the input tensor is on the same device across
        all the ranks.
        NOTE: `dst` is the local rank of the destination rank.
        """
        world_size = self.world_size
        # Bypass the function if we are using only 1 GPU.
        if world_size == 1:
            return input_
        assert (
            -input_.dim() <= dim < input_.dim()
        ), f"Invalid dim ({dim}) for input tensor with shape {input_.size()}"
        if dim < 0:
            # Convert negative dim to positive.
            dim += input_.dim()
        if self.xpu_communicator is not None and not self.xpu_communicator.disabled:
            return self.xpu_communicator.gather(input_, self.rank_in_group, dst, dim)
        # Allocate output tensor.
        if self.rank_in_group == dst:
            gather_list = [torch.empty_like(input_) for _ in range(world_size)]
        else:
            gather_list = None
        # Gather.
        torch.distributed.gather(
            input_, gather_list, dst=self.ranks[dst], group=self.device_group
        )
        if self.rank_in_group == dst:
            output_tensor = torch.cat(gather_list, dim=dim)
        else:
            output_tensor = None
        return output_tensor

    def broadcast(self, input_: torch.Tensor, src: int = 0):
        """Broadcast the input tensor.
        NOTE: `src` is the local rank of the source rank.
        """
        assert src < self.world_size, f"Invalid src rank ({src})"

        # Bypass the function if we are using only 1 GPU.
        if self.world_size == 1:
            return input_
        # Broadcast.
        torch.distributed.broadcast(
            input_, src=self.ranks[src], group=self.device_group
        )
        return input_

    def broadcast_object(self, obj: Optional[Any] = None, src: int = 0):
        """Broadcast the input object.
        NOTE: `src` is the local rank of the source rank.
        """
        assert src < self.world_size, f"Invalid src rank ({src})"

        # Bypass the function if we are using only 1 GPU.
        if self.world_size == 1:
            return obj
        if self.mq_broadcaster is not None:
            assert src == 0, "Message queue broadcaster only supports src=0"
            return self.mq_broadcaster.broadcast_object(obj)
        if self.rank_in_group == src:
            torch.distributed.broadcast_object_list(
                [obj], src=self.ranks[src], group=self.cpu_group
            )
            return obj
        else:
            recv = [None]
            torch.distributed.broadcast_object_list(
                recv, src=self.ranks[src], group=self.cpu_group
            )
            return recv[0]

    def broadcast_object_list(
        self, obj_list: List[Any], src: int = 0, group: Optional[ProcessGroup] = None
    ):
        """Broadcast the input object list.
        NOTE: `src` is the local rank of the source rank.
        """
        assert src < self.world_size, f"Invalid src rank ({src})"

        # Bypass the function if we are using only 1 GPU.
        if self.world_size == 1:
            return obj_list
        # Broadcast.
        torch.distributed.broadcast_object_list(
            obj_list, src=self.ranks[src], group=self.device_group
        )
        return obj_list

    def send_object(self, obj: Any, dst: int) -> None:
        """Send the input object list to the destination rank."""
        """NOTE: `dst` is the local rank of the destination rank."""

        assert dst < self.world_size, f"Invalid dst rank ({dst})"

        assert dst != self.rank_in_group, (
            "Invalid destination rank. Destination rank is the same "
            "as the current rank."
        )

        # Serialize object to tensor and get the size as well
        object_tensor = torch.frombuffer(pickle.dumps(obj), dtype=torch.uint8)

        size_tensor = torch.tensor(
            [object_tensor.numel()], dtype=torch.long, device="cpu"
        )

        # Send object size

        torch.distributed.send(size_tensor, dst=self.ranks[dst], group=self.cpu_group)

        # Send object
        torch.distributed.send(object_tensor, dst=self.ranks[dst], group=self.cpu_group)

        return None

    def recv_object(self, src: int) -> Any:
        """Receive the input object list from the source rank."""
        """NOTE: `src` is the local rank of the source rank."""

        assert src < self.world_size, f"Invalid src rank ({src})"

        assert (
            src != self.rank_in_group
        ), "Invalid source rank. Source rank is the same as the current rank."

        size_tensor = torch.empty(1, dtype=torch.long, device="cpu")

        # Receive object size
        rank_size = torch.distributed.recv(
            size_tensor, src=self.ranks[src], group=self.cpu_group
        )

        # Tensor to receive serialized objects into.
        object_tensor = torch.empty(  # type: ignore[call-overload]
            size_tensor.item(),  # type: ignore[arg-type]
            dtype=torch.uint8,
            device="cpu",
        )

        rank_object = torch.distributed.recv(
            object_tensor, src=self.ranks[src], group=self.cpu_group
        )

        assert (
            rank_object == rank_size
        ), "Received object sender rank does not match the size sender rank."

        obj = pickle.loads(object_tensor.numpy().tobytes())

        return obj

    def broadcast_tensor_dict(
        self,
        tensor_dict: Optional[Dict[str, Union[torch.Tensor, Any]]] = None,
        src: int = 0,
        group: Optional[ProcessGroup] = None,
        metadata_group: Optional[ProcessGroup] = None,
    ) -> Optional[Dict[str, Union[torch.Tensor, Any]]]:
        """Broadcast the input tensor dictionary.
        NOTE: `src` is the local rank of the source rank.
        """
        # Bypass the function if we are using only 1 GPU.
        if not torch.distributed.is_initialized() or self.world_size == 1:
            return tensor_dict

        group = self.device_group
        metadata_group = self.cpu_group
        assert src < self.world_size, f"Invalid src rank ({src})"

        rank_in_group = self.rank_in_group
        if rank_in_group == src:
            metadata_list: List[Tuple[Any, Any]] = []
            assert isinstance(
                tensor_dict, dict
            ), f"Expecting a dictionary, got {type(tensor_dict)}"
            metadata_list, tensor_list = _split_tensor_dict(tensor_dict)
            # `metadata_list` lives in CPU memory.
            # `broadcast_object_list` has serialization & deserialization,
            # all happening on CPU. Therefore, we can use the CPU group.
            self.broadcast_object(metadata_list, src=src)
            async_handles = []
            for tensor in tensor_list:
                if tensor.numel() == 0:
                    # Skip broadcasting empty tensors.
                    continue
                if tensor.is_cpu:
                    # use metadata_group for CPU tensors
                    handle = torch.distributed.broadcast(
                        tensor, src=self.ranks[src], group=metadata_group, async_op=True
                    )
                else:
                    # use group for GPU tensors
                    handle = torch.distributed.broadcast(
                        tensor, src=self.ranks[src], group=group, async_op=True
                    )
                async_handles.append(handle)
            for async_handle in async_handles:
                async_handle.wait()

        else:
            metadata_list = self.broadcast_object(None, src=src)
            tensor_dict = {}
            async_handles = []
            for key, value in metadata_list:
                if isinstance(value, TensorMetadata):
                    tensor = torch.empty(
                        value.size, dtype=value.dtype, device=value.device
                    )
                    if tensor.numel() == 0:
                        # Skip broadcasting empty tensors.
                        tensor_dict[key] = tensor
                        continue
                    if tensor.is_cpu:
                        # use metadata_group for CPU tensors
                        handle = torch.distributed.broadcast(
                            tensor,
                            src=self.ranks[src],
                            group=metadata_group,
                            async_op=True,
                        )
                    else:
                        # use group for GPU tensors
                        handle = torch.distributed.broadcast(
                            tensor, src=self.ranks[src], group=group, async_op=True
                        )
                    async_handles.append(handle)
                    tensor_dict[key] = tensor
                else:
                    tensor_dict[key] = value
            for async_handle in async_handles:
                async_handle.wait()
        return tensor_dict

    def send_tensor_dict(
        self,
        tensor_dict: Dict[str, Union[torch.Tensor, Any]],
        dst: Optional[int] = None,
        all_gather_group: Optional["GroupCoordinator"] = None,
    ) -> Optional[Dict[str, Union[torch.Tensor, Any]]]:
        """Send the input tensor dictionary.
        NOTE: `dst` is the local rank of the source rank.
        """
        # Bypass the function if we are using only 1 GPU.
        if not torch.distributed.is_initialized() or self.world_size == 1:
            return tensor_dict

        all_gather_size = 1 if all_gather_group is None else all_gather_group.world_size
        all_gather_rank = (
            0 if all_gather_group is None else all_gather_group.rank_in_group
        )

        group = self.device_group
        metadata_group = self.cpu_group

        if dst is None:
            dst = (self.rank_in_group + 1) % self.world_size
        assert dst < self.world_size, f"Invalid dst rank ({dst})"

        metadata_list: List[Tuple[Any, Any]] = []
        assert isinstance(
            tensor_dict, dict
        ), f"Expecting a dictionary, got {type(tensor_dict)}"
        metadata_list, tensor_list = _split_tensor_dict(tensor_dict)
        # `metadata_list` lives in CPU memory.
        # `send_object_list` has serialization & deserialization,
        # all happening on CPU. Therefore, we can use the CPU group.
        self.send_object(metadata_list, dst=dst)
        for tensor in tensor_list:
            if tensor.numel() == 0:
                # Skip sending empty tensors.
                continue

            # send-allgather: send only a slice, then do allgather.
            if all_gather_group is not None and tensor.numel() % all_gather_size == 0:
                tensor = tensor.reshape(all_gather_size, -1)[all_gather_rank]

            if tensor.is_cpu:
                # use metadata_group for CPU tensors
                torch.distributed.send(
                    tensor, dst=self.ranks[dst], group=metadata_group
                )
            else:
                # use group for GPU tensors
                torch.distributed.send(tensor, dst=self.ranks[dst], group=group)
        return None

    def recv_tensor_dict(
        self,
        src: Optional[int] = None,
        all_gather_group: Optional["GroupCoordinator"] = None,
    ) -> Optional[Dict[str, Union[torch.Tensor, Any]]]:
        """Recv the input tensor dictionary.
        NOTE: `src` is the local rank of the source rank.
        """
        # Bypass the function if we are using only 1 GPU.
        if not torch.distributed.is_initialized() or self.world_size == 1:
            return None

        all_gather_size = 1 if all_gather_group is None else all_gather_group.world_size
        all_gather_rank = (
            0 if all_gather_group is None else all_gather_group.rank_in_group
        )

        group = self.device_group
        metadata_group = self.cpu_group

        if src is None:
            src = (self.rank_in_group - 1) % self.world_size
        assert src < self.world_size, f"Invalid src rank ({src})"

        recv_metadata_list = self.recv_object(src=src)
        tensor_dict: Dict[str, Any] = {}
        for key, value in recv_metadata_list:
            if isinstance(value, TensorMetadata):
                tensor = torch.empty(value.size, dtype=value.dtype, device=value.device)
                if tensor.numel() == 0:
                    # Skip broadcasting empty tensors.
                    tensor_dict[key] = tensor
                    continue

                # send-allgather: send only a slice, then do allgather.
                use_all_gather = (
                    all_gather_group is not None
                    and tensor.numel() % all_gather_size == 0
                )

                if use_all_gather:
                    orig_shape = tensor.shape
                    tensor = tensor.reshape(all_gather_size, -1)[all_gather_rank]

                if tensor.is_cpu:
                    # use metadata_group for CPU tensors
                    torch.distributed.recv(
                        tensor, src=self.ranks[src], group=metadata_group
                    )
                else:
                    # use group for GPU tensors
                    torch.distributed.recv(tensor, src=self.ranks[src], group=group)
                if use_all_gather:
                    # do the allgather
                    tensor = all_gather_group.all_gather(tensor, dim=0)  # type: ignore
                    tensor = tensor.reshape(orig_shape)

                tensor_dict[key] = tensor
            else:
                tensor_dict[key] = value
        return tensor_dict

    def barrier(self):
        """Barrier synchronization among the group.
        NOTE: don't use `device_group` here! `barrier` in NCCL is
        terrible because it is internally a broadcast operation with
        secretly created GPU tensors. It is easy to mess up the current
        device. Use the CPU group instead.
        """
        torch.distributed.barrier(group=self.cpu_group)

    def send(self, tensor: torch.Tensor, dst: Optional[int] = None) -> None:
        """Sends a tensor to the destination rank in a non-blocking way"""
        """NOTE: `dst` is the local rank of the destination rank."""
        if dst is None:
            dst = (self.rank_in_group + 1) % self.world_size

        pynccl_comm = self.pynccl_comm
        if pynccl_comm is not None and not pynccl_comm.disabled:
            pynccl_comm.send(tensor, dst)
        else:
            torch.distributed.send(tensor, self.ranks[dst], self.device_group)

    def recv(
        self, size: torch.Size, dtype: torch.dtype, src: Optional[int] = None
    ) -> torch.Tensor:
        """Receives a tensor from the source rank."""
        """NOTE: `src` is the local rank of the source rank."""
        if src is None:
            src = (self.rank_in_group - 1) % self.world_size

        tensor = torch.empty(size, dtype=dtype, device=self.device)
        pynccl_comm = self.pynccl_comm
        if pynccl_comm is not None and not pynccl_comm.disabled:
            pynccl_comm.recv(tensor, src)
        else:
            torch.distributed.recv(tensor, self.ranks[src], self.device_group)
        return tensor

    def destroy(self):
        if self.device_group is not None:
            torch.distributed.destroy_process_group(self.device_group)
            self.device_group = None
        if self.cpu_group is not None:
            torch.distributed.destroy_process_group(self.cpu_group)
            self.cpu_group = None
        if self.pynccl_comm is not None:
            self.pynccl_comm = None
        if self.ca_comm is not None:
            self.ca_comm = None
        if self.mq_broadcaster is not None:
            self.mq_broadcaster = None


_WORLD: Optional[GroupCoordinator] = None


def get_world_group() -> GroupCoordinator:
    assert _WORLD is not None, "world group is not initialized"
    return _WORLD


def init_world_group(
    ranks: List[int], local_rank: int, backend: str
) -> GroupCoordinator:
    return GroupCoordinator(
        group_ranks=[ranks],
        local_rank=local_rank,
        torch_distributed_backend=backend,
        use_pynccl=False,
        use_custom_allreduce=False,
        use_hpu_communicator=False,
        use_xpu_communicator=False,
964
        use_npu_communicator=False,
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
        group_name="world",
    )


def init_model_parallel_group(
    group_ranks: List[List[int]],
    local_rank: int,
    backend: str,
    use_custom_allreduce: Optional[bool] = None,
    use_message_queue_broadcaster: bool = False,
    group_name: Optional[str] = None,
) -> GroupCoordinator:
    if use_custom_allreduce is None:
        use_custom_allreduce = _ENABLE_CUSTOM_ALL_REDUCE
    return GroupCoordinator(
        group_ranks=group_ranks,
        local_rank=local_rank,
        torch_distributed_backend=backend,
983
        use_pynccl=not is_npu(),
984
985
986
        use_custom_allreduce=use_custom_allreduce,
        use_hpu_communicator=True,
        use_xpu_communicator=True,
987
        use_npu_communicator=True,
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
        use_message_queue_broadcaster=use_message_queue_broadcaster,
        group_name=group_name,
    )


_TP: Optional[GroupCoordinator] = None


def get_tp_group() -> GroupCoordinator:
    assert _TP is not None, "tensor model parallel group is not initialized"
    return _TP


# kept for backward compatibility
get_tensor_model_parallel_group = get_tp_group

_PP: Optional[GroupCoordinator] = None


def get_pp_group() -> GroupCoordinator:
    assert _PP is not None, "pipeline model parallel group is not initialized"
    return _PP


# kept for backward compatibility
get_pipeline_model_parallel_group = get_pp_group


@contextmanager
def graph_capture():
    """
    `graph_capture` is a context manager which should surround the code that
    is capturing the CUDA graph. Its main purpose is to ensure that the
    some operations will be run after the graph is captured, before the graph
    is replayed. It returns a `GraphCaptureContext` object which contains the
    necessary data for the graph capture. Currently, it only contains the
    stream that the graph capture is running on. This stream is set to the
    current CUDA stream when the context manager is entered and reset to the
    default stream when the context manager is exited. This is to ensure that
    the graph capture is running on a separate stream from the default stream,
    in order to explicitly distinguish the kernels to capture
    from other kernels possibly launched on background in the default stream.
    """
    with get_tp_group().graph_capture() as context, get_pp_group().graph_capture(
        context
    ):
        yield context


logger = logging.getLogger(__name__)

_ENABLE_CUSTOM_ALL_REDUCE = True


def set_custom_all_reduce(enable: bool):
    global _ENABLE_CUSTOM_ALL_REDUCE
    _ENABLE_CUSTOM_ALL_REDUCE = enable


def init_distributed_environment(
    world_size: int = -1,
    rank: int = -1,
    distributed_init_method: str = "env://",
    local_rank: int = -1,
    backend: str = "nccl",
1053
    timeout: Optional[int] = None,
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
):
    logger.debug(
        "world_size=%d rank=%d local_rank=%d " "distributed_init_method=%s backend=%s",
        world_size,
        rank,
        local_rank,
        distributed_init_method,
        backend,
    )
    if not torch.distributed.is_initialized():
        assert distributed_init_method is not None, (
            "distributed_init_method must be provided when initializing "
            "distributed environment"
        )
1068
1069
1070
1071
1072
        if timeout is not None:
            assert isinstance(timeout, (int)), "timeout must be a number"
            assert timeout > 0, "timeout must be positive"
            timeout = timedelta(seconds=timeout)

1073
1074
1075
1076
1077
1078
        # this backend is used for WORLD
        torch.distributed.init_process_group(
            backend=backend,
            init_method=distributed_init_method,
            world_size=world_size,
            rank=rank,
1079
            timeout=timeout,
1080
        )
1081

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
    # set the local rank
    # local_rank is not available in torch ProcessGroup,
    # see https://github.com/pytorch/pytorch/issues/122816
    if local_rank == -1:
        # local rank not set, this usually happens in single-node
        # setting, where we can use rank as local rank
        if distributed_init_method == "env://":
            local_rank = int(os.environ.get("LOCAL_RANK", "0"))
        else:
            local_rank = rank
    global _WORLD
    if _WORLD is None:
        ranks = list(range(torch.distributed.get_world_size()))
        _WORLD = init_world_group(ranks, local_rank, backend)
    else:
        assert (
            _WORLD.world_size == torch.distributed.get_world_size()
        ), "world group already initialized with a different world size"


def initialize_model_parallel(
    tensor_model_parallel_size: int = 1,
    pipeline_model_parallel_size: int = 1,
    backend: Optional[str] = None,
) -> None:
    """
    Initialize model parallel groups.

    Arguments:
        tensor_model_parallel_size: number of GPUs used for tensor model
            parallelism.
        pipeline_model_parallel_size: number of GPUs used for pipeline model
            parallelism.

    Let's say we have a total of 8 GPUs denoted by g0 ... g7 and we
    use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
    the model pipeline. The present function will
    create 4 tensor model-parallel groups and 2 pipeline model-parallel groups:
        4 tensor model-parallel groups:
            [g0, g1], [g2, g3], [g4, g5], [g6, g7]
        2 pipeline model-parallel groups:
            [g0, g2, g4, g6], [g1, g3, g5, g7]
    Note that for efficiency, the caller should make sure adjacent ranks
    are on the same DGX box. For example if we are using 2 DGX-1 boxes
    with a total of 16 GPUs, rank 0 to 7 belong to the first box and
    ranks 8 to 15 belong to the second box.
    """
    # Get world size and rank. Ensure some consistencies.
    assert torch.distributed.is_initialized()
    world_size: int = torch.distributed.get_world_size()
    backend = backend or torch.distributed.get_backend(get_world_group().device_group)

    if world_size != tensor_model_parallel_size * pipeline_model_parallel_size:
        raise RuntimeError(
            f"world_size ({world_size}) is not equal to "
            f"tensor_model_parallel_size ({tensor_model_parallel_size}) x "
            f"pipeline_model_parallel_size ({pipeline_model_parallel_size})"
        )

    # Build the tensor model-parallel groups.
    num_tensor_model_parallel_groups: int = world_size // tensor_model_parallel_size
    global _TP
    assert _TP is None, "tensor model parallel group is already initialized"
    group_ranks = []
    for i in range(num_tensor_model_parallel_groups):
        ranks = list(
            range(i * tensor_model_parallel_size, (i + 1) * tensor_model_parallel_size)
        )
        group_ranks.append(ranks)

    # message queue broadcaster is only used in tensor model parallel group
    _TP = init_model_parallel_group(
        group_ranks,
        get_world_group().local_rank,
        backend,
1157
1158
1159
        use_message_queue_broadcaster=get_bool_env_var(
            "SGLANG_USE_MESSAGE_QUEUE_BROADCASTER", "true"
        ),
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
        group_name="tp",
    )

    # Build the pipeline model-parallel groups.
    num_pipeline_model_parallel_groups: int = world_size // pipeline_model_parallel_size
    global _PP
    assert _PP is None, "pipeline model parallel group is already initialized"
    group_ranks = []
    for i in range(num_pipeline_model_parallel_groups):
        ranks = list(range(i, world_size, num_pipeline_model_parallel_groups))
        group_ranks.append(ranks)
    # pipeline parallel does not need custom allreduce
    _PP = init_model_parallel_group(
        group_ranks,
        get_world_group().local_rank,
        backend,
        use_custom_allreduce=False,
        group_name="pp",
    )


def ensure_model_parallel_initialized(
    tensor_model_parallel_size: int,
    pipeline_model_parallel_size: int,
    backend: Optional[str] = None,
) -> None:
    """Helper to initialize model parallel groups if they are not initialized,
    or ensure tensor-parallel and pipeline-parallel sizes are equal to expected
    values if the model parallel groups are initialized.
    """
    backend = backend or torch.distributed.get_backend(get_world_group().device_group)
    if not model_parallel_is_initialized():
        initialize_model_parallel(
            tensor_model_parallel_size, pipeline_model_parallel_size, backend
        )
        return

    assert get_tensor_model_parallel_world_size() == tensor_model_parallel_size, (
        "tensor parallel group already initialized, but of unexpected size: "
        f"{get_tensor_model_parallel_world_size()=} vs. "
        f"{tensor_model_parallel_size=}"
    )
    pp_world_size = get_pp_group().world_size
    assert pp_world_size == pipeline_model_parallel_size, (
        "pipeline parallel group already initialized, but of unexpected size: "
        f"{pp_world_size=} vs. "
        f"{pipeline_model_parallel_size=}"
    )


def model_parallel_is_initialized():
    """Check if tensor and pipeline parallel groups are initialized."""
    return _TP is not None and _PP is not None


_TP_STATE_PATCHED = False


@contextmanager
def patch_tensor_parallel_group(tp_group: GroupCoordinator):
    """Patch the tp group temporarily until this function ends.

    This method is for draft workers of speculative decoding to run draft model
    with different tp degree from that of target model workers.

    Args:
        tp_group (GroupCoordinator): the tp group coordinator
    """
    global _TP_STATE_PATCHED
    assert not _TP_STATE_PATCHED, "Should not call when it's already patched"

    _TP_STATE_PATCHED = True
    old_tp_group = get_tp_group()
    global _TP
    _TP = tp_group
    try:
        yield
    finally:
        # restore the original state
        _TP_STATE_PATCHED = False
        _TP = old_tp_group


def get_tensor_model_parallel_world_size():
    """Return world size for the tensor model parallel group."""
    return get_tp_group().world_size


def get_tensor_model_parallel_rank():
    """Return my rank for the tensor model parallel group."""
    return get_tp_group().rank_in_group


def destroy_model_parallel():
    """Set the groups to none and destroy them."""
    global _TP
    if _TP:
        _TP.destroy()
    _TP = None

    global _PP
    if _PP:
        _PP.destroy()
    _PP = None


def destroy_distributed_environment():
    global _WORLD
    if _WORLD:
        _WORLD.destroy()
    _WORLD = None
    if torch.distributed.is_initialized():
        torch.distributed.destroy_process_group()


def cleanup_dist_env_and_memory(shutdown_ray: bool = False):
    destroy_model_parallel()
    destroy_distributed_environment()
    with contextlib.suppress(AssertionError):
        torch.distributed.destroy_process_group()
    if shutdown_ray:
        import ray  # Lazy import Ray

        ray.shutdown()
    gc.collect()
    if not current_platform.is_cpu():
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
        if hasattr(torch, "cuda") and torch.cuda.is_available():
            torch.cuda.empty_cache()
            if hasattr(torch._C, "_host_emptyCache"):
                torch._C._host_emptyCache()
            else:
                logger.warning(
                    "torch._C._host_emptyCache() only available in Pytorch >=2.5"
                )
        elif hasattr(torch, "xpu") and torch.xpu.is_available():
            torch.xpu.empty_cache()
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369


def in_the_same_node_as(pg: ProcessGroup, source_rank: int = 0) -> List[bool]:
    """
    This is a collective operation that returns if each rank is in the same node
    as the source rank. It tests if processes are attached to the same
    memory system (shared access to shared memory).
    """
    assert (
        torch.distributed.get_backend(pg) != torch.distributed.Backend.NCCL
    ), "in_the_same_node_as should be tested with a non-NCCL group."
    # local rank inside the group
    rank = torch.distributed.get_rank(group=pg)
    world_size = torch.distributed.get_world_size(group=pg)

    # local tensor in each process to store the result
    is_in_the_same_node = torch.tensor([0] * world_size, dtype=torch.int32)

    # global ranks of the processes in the group
    ranks = torch.distributed.get_process_group_ranks(pg)

    magic_message = b"magic_message"
    shm = None

    try:
        with contextlib.suppress(OSError):
            if rank == source_rank:
                # create a shared memory segment
                shm = shared_memory.SharedMemory(create=True, size=128)
                shm.buf[: len(magic_message)] = magic_message
                torch.distributed.broadcast_object_list(
                    [shm.name], src=ranks[source_rank], group=pg
                )
                is_in_the_same_node[rank] = 1
            else:
                # try to open the shared memory segment
                recv = [None]
                torch.distributed.broadcast_object_list(
                    recv, src=ranks[source_rank], group=pg
                )
                name = recv[0]
                # fix to https://stackoverflow.com/q/62748654/9191338
                # Python incorrectly tracks shared memory even if it is not
                # created by the process. The following patch is a workaround.
                with patch(
                    "multiprocessing.resource_tracker.register",
                    lambda *args, **kwargs: None,
                ):
                    shm = shared_memory.SharedMemory(name=name)
                if shm.buf[: len(magic_message)] == magic_message:
                    is_in_the_same_node[rank] = 1
    except Exception as e:
        logger.error("Error ignored in is_in_the_same_node: %s", e)
    finally:
        if shm:
            shm.close()

    torch.distributed.barrier(group=pg)

    # clean up the shared memory segment
    with contextlib.suppress(OSError):
        if rank == source_rank and shm:
            shm.unlink()
    torch.distributed.all_reduce(is_in_the_same_node, group=pg)

    return [x == 1 for x in is_in_the_same_node.tolist()]


vllm_get_pp_group = None
vllm_get_tp_group = None
vllm_get_world_group = None


def monkey_patch_vllm_parallel_state(reverse: bool = False):
1370
1371
1372
1373
    try:
        import vllm.distributed.parallel_state as vllm_parrlel_state
    except ImportError:
        return
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387

    global vllm_get_pp_group, vllm_get_tp_group, vllm_get_world_group
    if vllm_get_pp_group is None:
        vllm_get_pp_group = vllm_parrlel_state.get_pp_group
        vllm_get_tp_group = vllm_parrlel_state.get_tp_group
        vllm_get_world_group = vllm_parrlel_state.get_world_group
    if reverse:
        setattr(vllm_parrlel_state, "get_pp_group", vllm_get_pp_group)
        setattr(vllm_parrlel_state, "get_tp_group", vllm_get_tp_group)
        setattr(vllm_parrlel_state, "get_world_group", vllm_get_world_group)
    else:
        setattr(vllm_parrlel_state, "get_pp_group", get_pp_group)
        setattr(vllm_parrlel_state, "get_tp_group", get_tp_group)
        setattr(vllm_parrlel_state, "get_world_group", get_world_group)