dsv3_fused_a_gemm.cu 25.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
/*
 * Adapted from
 * https://github.com/NVIDIA/TensorRT-LLM/blob/619709fc33bd5dc268f19d6a741fe7ed51c0f8f5/cpp/tensorrt_llm/kernels/dsv3MinLatencyKernels/dsv3FusedAGemm.cu
 *
 * Copyright (c) 2019-2024, NVIDIA CORPORATION.  All rights reserved.
 * Copyright (c) 2021, NAVER Corp.  Authored by CLOVA.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda_bf16.h>
#include <cuda_runtime.h>

#include "utils.h"

using bf16_t = __nv_bfloat16;

__device__ void hmma_16_8_16_f32acc_bf16ab(
    float (&d_reg)[4], const bf16_t (&a_reg)[8], const bf16_t (&b_reg)[4], float const (&c_reg)[4]) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
  uint32_t a0 = *reinterpret_cast<uint32_t const*>(a_reg + 0);
  uint32_t a1 = *reinterpret_cast<uint32_t const*>(a_reg + 2);
  uint32_t a2 = *reinterpret_cast<uint32_t const*>(a_reg + 4);
  uint32_t a3 = *reinterpret_cast<uint32_t const*>(a_reg + 6);
  uint32_t b0 = *reinterpret_cast<uint32_t const*>(b_reg + 0);
  uint32_t b1 = *reinterpret_cast<uint32_t const*>(b_reg + 2);
  asm volatile(
      "mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
      "{%0,  %1,  %2,  %3},"
      "{%4,  %5,  %6,  %7},"
      "{%8,  %9},"
      "{%10, %11, %12, %13};\n"
      : "=f"(d_reg[0]), "=f"(d_reg[1]), "=f"(d_reg[2]), "=f"(d_reg[3])
      : "r"(a0),
        "r"(a1),
        "r"(a2),
        "r"(a3),
        "r"(b0),
        "r"(b1),
        "f"(d_reg[0]),
        "f"(d_reg[1]),
        "f"(d_reg[2]),
        "f"(d_reg[3]));
#endif
}

extern "C" {
__device__ uint32_t __nvvm_get_smem_pointer(void*);
}

__device__ void ldgsts_128(void const* gPtr, void* sPtr, uint32_t pred) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
  if (pred) {
    uint32_t smemPtrAsUint32 = __nvvm_get_smem_pointer(sPtr);
    asm volatile("cp.async.cg.shared.global.L2::128B [%0], [%1], %2;\n" ::"r"(smemPtrAsUint32), "l"(gPtr), "n"(16));
  }
#endif
}

__device__ void ldsm_x4(void* smem_ptr, uint32_t* reg_ptr) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
  asm volatile("ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, %3}, [%4];\n"
               : "=r"(reg_ptr[0]), "=r"(reg_ptr[1]), "=r"(reg_ptr[2]), "=r"(reg_ptr[3])
               : "r"(__nvvm_get_smem_pointer(smem_ptr)));
#endif
}

template <class Type>
__device__ int apply_swizzle_343_on_elem_row_col(int row_idx_, int col_idx_) {
  uint32_t row_idx = *reinterpret_cast<uint32_t*>(&row_idx_);
  uint32_t col_idx = *reinterpret_cast<uint32_t*>(&col_idx_);
  row_idx = row_idx % 8;
  row_idx = row_idx * (16 / sizeof(Type));
  col_idx = col_idx ^ row_idx;
  return *reinterpret_cast<int*>(&col_idx);
}

__device__ void initialize_barrier(
    uint64_t* smem_barrier,  // 64 bits user-manged barrier in smem
    int thread_count = 1)    // Thread count expected to arrive/wait on this barrier
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
  uint32_t smem_int_ptr = __nvvm_get_smem_pointer(smem_barrier);
  asm volatile("mbarrier.init.shared::cta.b64 [%0], %1;\n" ::"r"(smem_int_ptr), "r"(thread_count));
#endif
}

// Barrier wait
__device__ void wait_barrier(
    uint64_t* smem_barrier,  // 64 bits user-manged barrier in smem
    int phase_bit)           // Current phase bit the barrier waiting to flip
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
  uint32_t smem_int_ptr = __nvvm_get_smem_pointer(smem_barrier);
  asm volatile(
      "{\n"
      ".reg .pred                P1;\n"
      "LAB_WAIT:\n"
      "mbarrier.try_wait.parity.shared::cta.b64 P1, [%0], %1;\n"
      "@P1                       bra DONE;\n"
      "bra                   LAB_WAIT;\n"
      "DONE:\n"
      "}\n" ::"r"(smem_int_ptr),
      "r"(phase_bit));
#endif
}

__device__ bool try_wait_barrier(uint64_t* smem_ptr, int phase_bit) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
  uint32_t wait_complete;
  uint32_t smem_int_ptr = __nvvm_get_smem_pointer(smem_ptr);
  asm volatile(
      "{\n\t"
      ".reg .pred P1; \n\t"
      "mbarrier.try_wait.parity.shared::cta.b64 P1, [%1], %2; \n\t"
      "selp.b32 %0, 1, 0, P1; \n\t"
      "}"
      : "=r"(wait_complete)
      : "r"(smem_int_ptr), "r"(phase_bit));
  return static_cast<bool>(wait_complete);
#endif
}

// Barrier arrive
__device__ void arrive_barrier(uint64_t* smem_barrier)  // 64 bits user-manged barrier in smem
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
  uint32_t smem_int_ptr = __nvvm_get_smem_pointer(smem_barrier);
  asm volatile(
      "{\n"
      ".reg .b64 state; \n"
      "mbarrier.arrive.shared::cta.b64   state, [%0];\n"
      "}\n" ::"r"(smem_int_ptr));
#endif
}

__device__ void ldgsts_arrive(uint64_t* smem_barrier) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
  uint32_t smem_int_ptr = __nvvm_get_smem_pointer(smem_barrier);
  asm volatile("cp.async.mbarrier.arrive.noinc.shared.b64 [%0];" : : "r"(smem_int_ptr));
#endif
}

template <int gemm_k, int tile_m, int tile_k, int stage_cnt>
struct GmemLoaderA {
  static constexpr int elem_bytes = 2;
  static constexpr int vec_bytes = 16;
  static constexpr int vec_elems = vec_bytes / elem_bytes;
  static constexpr int thread_cnt = 64;
  static_assert((tile_m * tile_k) % (vec_elems * thread_cnt) == 0);
  static constexpr int a_inst_cnt_per_iter = (tile_m * tile_k) / (vec_elems * thread_cnt);
  static_assert(gemm_k % tile_k == 0);
  static constexpr int k_iter_cnt = gemm_k / tile_k;

  // Extra params to keep the order of k reduction...
  static constexpr int mma_warp_cnt = 4;
  static constexpr int per_mma_warp_k = tile_k / mma_warp_cnt;
  static constexpr int k_each_chunk = gemm_k / mma_warp_cnt;

 private:
  __device__ int k_project(int tile_k_idx) {
    return (tile_k_idx / per_mma_warp_k * k_each_chunk) + (tile_k_idx % per_mma_warp_k);
  }

 public:
  __device__ GmemLoaderA(bf16_t const* gmem_a_local_, bf16_t* smem_a_, uint64_t* smem_barrier_)
      : gmem_a(gmem_a_local_), smem_a(smem_a_), smem_barrier(smem_barrier_), local_tid(threadIdx.x % thread_cnt) {}

  __device__ void prepare() {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
// swizzle, that's what we want.
#pragma unroll
    for (int i = 0; i < a_inst_cnt_per_iter; i++) {
      int linear_idx = local_tid * vec_elems + i * thread_cnt * vec_elems;
      int m_idx = linear_idx / tile_k;
      int k_idx = linear_idx % tile_k;
      k_idx = apply_swizzle_343_on_elem_row_col<bf16_t>(m_idx, k_idx);
      a_smem_offsets[i] = m_idx * tile_k + k_idx;
    }
#endif
  }

  __device__ void issue_mainloop() {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
#pragma unroll 1
    for (int loop_idx = 0; loop_idx < k_iter_cnt; loop_idx++) {
      if (need_wait) {
        wait_barrier(smem_barrier + 1 + stage_idx * 2, phase_bit);
      }
      int next_stage_idx = stage_idx + 1;
      int next_phase_bit = next_stage_idx == stage_cnt ? phase_bit ^ 1 : phase_bit;
      next_stage_idx = next_stage_idx == stage_cnt ? 0 : next_stage_idx;
      if (loop_idx != k_iter_cnt - 1) {
        need_wait = !try_wait_barrier(smem_barrier + 1 + next_stage_idx * 2, next_phase_bit);
      }

#pragma unroll
      for (int i = 0; i < a_inst_cnt_per_iter; i++) {
        int smem_offset = a_smem_offsets[i];
        bf16_t* smem_ptr_this_iter = smem_a + stage_idx * tile_m * tile_k + smem_offset;
        int linear_idx = local_tid * vec_elems + i * thread_cnt * vec_elems;
        int m_idx = linear_idx / tile_k;
        int k_idx = linear_idx % tile_k;
        int gmem_offset = m_idx * gemm_k + k_project(k_idx);
        bf16_t const* gmem_ptr_this_iter = gmem_a + gmem_offset;
        ldgsts_128(gmem_ptr_this_iter, smem_ptr_this_iter, true);
      }
      ldgsts_arrive(smem_barrier + stage_idx * 2);

      stage_idx = next_stage_idx;
      phase_bit = next_phase_bit;
      gmem_a += per_mma_warp_k;
    }
#endif
  }

  bf16_t const* gmem_a;
  bf16_t* smem_a;
  uint64_t* smem_barrier;
  int local_tid;
  int stage_idx = 0;
  int phase_bit = 1;
  bool need_wait = true;

  // per smem_stage, store with swizzle information
  int a_smem_offsets[a_inst_cnt_per_iter];
};

template <int gemm_k, int tile_n, int tile_k, int stage_cnt>
struct GmemLoaderB {
  static constexpr int elem_bytes = 2;
  static constexpr int vec_bytes = 16;
  static constexpr int vec_elems = vec_bytes / elem_bytes;
  static constexpr int thread_cnt = 64;
  static_assert((tile_n * tile_k) % (vec_elems * thread_cnt) == 0);
  static constexpr int b_inst_cnt_per_iter = (tile_n * tile_k) / (vec_elems * thread_cnt);
  static_assert(gemm_k % tile_k == 0);
  static constexpr int k_iter_cnt = gemm_k / tile_k;

  // Extra params to keep the order of k reduction...
  static constexpr int mma_warp_cnt = 4;
  static constexpr int per_mma_warp_k = tile_k / mma_warp_cnt;
  static constexpr int k_each_chunk = gemm_k / mma_warp_cnt;

 private:
  __device__ int k_project(int tile_k_idx) {
    return (tile_k_idx / per_mma_warp_k * k_each_chunk) + (tile_k_idx % per_mma_warp_k);
  }

 public:
  __device__ GmemLoaderB(bf16_t const* gmem_b_local_, bf16_t* smem_b_, uint64_t* smem_barrier_, int gemm_n_)
      : gmem_b(gmem_b_local_),
        smem_b(smem_b_),
        smem_barrier(smem_barrier_),
        gemm_n(gemm_n_),
        local_tid(threadIdx.x % thread_cnt) {}

  __device__ void prepare() {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
// swizzle, that's what we want.
#pragma unroll
    for (int i = 0; i < b_inst_cnt_per_iter; i++) {
      int linear_idx = local_tid * vec_elems + i * thread_cnt * vec_elems;
      int n_idx = linear_idx / tile_k;
      int k_idx = linear_idx % tile_k;
      k_idx = apply_swizzle_343_on_elem_row_col<bf16_t>(n_idx, k_idx);
      b_smem_offsets[i] = n_idx * tile_k + k_idx;
      preds[i] = n_idx < gemm_n;
    }
#endif
  }

  __device__ void issue_mainloop() {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
    asm volatile("griddepcontrol.wait;");
#pragma unroll 1
    for (int loop_idx = 0; loop_idx < k_iter_cnt; loop_idx++) {
      if (need_wait) {
        wait_barrier(smem_barrier + 1 + stage_idx * 2, phase_bit);
      }
      int next_stage_idx = stage_idx + 1;
      int next_phase_bit = next_stage_idx == stage_cnt ? phase_bit ^ 1 : phase_bit;
      next_stage_idx = next_stage_idx == stage_cnt ? 0 : next_stage_idx;
      if (loop_idx != k_iter_cnt - 1) {
        need_wait = !try_wait_barrier(smem_barrier + 1 + next_stage_idx * 2, next_phase_bit);
      }
#pragma unroll
      for (int i = 0; i < b_inst_cnt_per_iter; i++) {
        int smem_offset = b_smem_offsets[i];
        bf16_t* smem_ptr_this_iter = smem_b + stage_idx * tile_n * tile_k + smem_offset;
        int linear_idx = local_tid * vec_elems + i * thread_cnt * vec_elems;
        int n_idx = linear_idx / tile_k;
        int k_idx = linear_idx % tile_k;
        int gmem_offset = n_idx * gemm_k + k_project(k_idx);
        bf16_t const* gmem_ptr_this_iter = gmem_b + gmem_offset;
        ldgsts_128(gmem_ptr_this_iter, smem_ptr_this_iter, preds[i]);
      }
      ldgsts_arrive(smem_barrier + stage_idx * 2);

      stage_idx = next_stage_idx;
      phase_bit = next_phase_bit;
      gmem_b += per_mma_warp_k;
    }
#endif
  }

  bf16_t const* gmem_b;
  bf16_t* smem_b;
  uint64_t* smem_barrier;
  int gemm_n;
  int local_tid;
  int stage_idx = 0;
  int phase_bit = 1;
  bool need_wait = true;

  // per smem_stage, store with swizzle information
  int b_smem_offsets[b_inst_cnt_per_iter];
  uint32_t preds[b_inst_cnt_per_iter];
};

template <int gemm_m, int gemm_k, int tile_m, int tile_n, int tile_k, int stage_cnt>
struct MmaComputer {
  static constexpr int elem_bytes = 2;
  static constexpr int thread_cnt = 128;
  static_assert(gemm_k % tile_k == 0);
  static_assert(tile_k % (thread_cnt / 32) == 0);
  static constexpr int per_warp_tile_k = tile_k / (thread_cnt / 32);
  static constexpr int k_iter_cnt = gemm_k / tile_k;
  static constexpr int k_phase_cnt = per_warp_tile_k / 16;
  static constexpr int m_iter_cnt = (tile_m + 15) / 16;
  static constexpr int n_iter_cnt = (tile_n + 7) / 8;  // Possible to have non-1 n_iter_cnt for ab_swap m16 case.
  static_assert(m_iter_cnt == 1);
  static_assert(n_iter_cnt == 1 || n_iter_cnt == 2);

  __device__ MmaComputer(
      bf16_t* gmem_c_local_, bf16_t* smem_a_, bf16_t* smem_b_, uint64_t* smem_barrier_, int warp_idx_, int gemm_n_)
      : gmem_c(gmem_c_local_),
        smem_a(smem_a_),
        smem_b(smem_b_),
        smem_barrier(smem_barrier_),
        warp_idx(warp_idx_ - (thread_cnt / 32)),
        gemm_n(gemm_n_) {}

 private:
  __device__ constexpr int internal_b_atom_func(int tid) {
    if constexpr (tile_n < 8) {
      return (tid % tile_n) + ((tid % 8) / tile_n * 0) + tid / 8 * 8 * tile_n;
    } else {
      return (tid % 8) + ((tid % 32) / 8 * (tile_n * 8));
    }
  }

 public:
  __device__ void prepare() {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
#pragma unroll
    for (int i = 0; i < k_phase_cnt; i++) {
      int linear_idx = (lane_idx % 16) + (lane_idx / 16) * 128 + i * 256;
      int m_idx = linear_idx % tile_m;
      int k_idx = linear_idx / tile_m + warp_k_offset_in_tile_k;
      k_idx = apply_swizzle_343_on_elem_row_col<bf16_t>(m_idx, k_idx);
      a_smem_offsets[0][i] = m_idx * tile_k + k_idx;
    }
#pragma unroll
    for (int n_iter_idx = 0; n_iter_idx < n_iter_cnt; n_iter_idx++) {
#pragma unroll
      for (int i = 0; i < k_phase_cnt; i += 2) {  // Special i+=2 for B.
        int linear_idx = internal_b_atom_func(lane_idx) + i * tile_n * 16 + n_iter_idx * 8;
        int n_idx = linear_idx % tile_n;
        int k_idx = linear_idx / tile_n + warp_k_offset_in_tile_k;
        k_idx = apply_swizzle_343_on_elem_row_col<bf16_t>(n_idx, k_idx);
        b_smem_offsets[n_iter_idx][i] = n_idx * tile_k + k_idx;
      }
    }
#endif
  }

  __device__ void issue_mainloop() {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
#pragma unroll 1
    for (int loop_idx = 0; loop_idx < k_iter_cnt; loop_idx++) {
      wait_barrier(smem_barrier + 0 + stage_idx * 2, phase_bit);

#pragma unroll
      for (int i = 0; i < k_phase_cnt; i++) {
        int smem_offset = a_smem_offsets[0][i];
        bf16_t* smem_ptr_this_iter = smem_a + stage_idx * tile_m * tile_k + smem_offset;
        ldsm_x4(smem_ptr_this_iter, reinterpret_cast<uint32_t*>(a_reg[0][i]));
      }

#pragma unroll
      for (int n_iter_idx = 0; n_iter_idx < n_iter_cnt; n_iter_idx++) {
#pragma unroll
        for (int i = 0; i < k_phase_cnt; i += 2) {
          int smem_offset = b_smem_offsets[n_iter_idx][i];
          bf16_t* smem_ptr_this_iter = smem_b + stage_idx * tile_n * tile_k + smem_offset;
          ldsm_x4(smem_ptr_this_iter, reinterpret_cast<uint32_t*>(b_reg[n_iter_idx][i]));
        }
      }

#pragma unroll
      for (int k_iter_idx = 0; k_iter_idx < k_phase_cnt; k_iter_idx++) {
#pragma unroll
        for (int n_iter_idx = 0; n_iter_idx < n_iter_cnt; n_iter_idx++) {
          hmma_16_8_16_f32acc_bf16ab(
              acc_reg[0][n_iter_idx], a_reg[0][k_iter_idx], b_reg[n_iter_idx][k_iter_idx], acc_reg[0][n_iter_idx]);
        }
      }
      ::arrive_barrier(smem_barrier + 1 + stage_idx * 2);
      stage_idx += 1;
      phase_bit = stage_idx == stage_cnt ? phase_bit ^ 1 : phase_bit;
      stage_idx = stage_idx == stage_cnt ? 0 : stage_idx;
    }
#endif
  }

  __device__ void epi() {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
    asm volatile("bar.sync %0, %1;" : : "r"(1), "r"(thread_cnt));
    // reorganize the acc_reg
    constexpr int thread_m = 2;
    constexpr int thread_n = 2 * n_iter_cnt;
    constexpr int cta_mma_n = n_iter_cnt * 8;
    float acc_reg_reorg[thread_m][thread_n];

    for (int i = 0; i < thread_m; i++) {
      for (int j = 0; j < thread_n; j++) {
        acc_reg_reorg[i][j] = acc_reg[0][j / 2][(j % 2) + (i * 2)];
      }
    }

    // 4 x cosize(smem_c_layout)
    float* smem_c = reinterpret_cast<float*>(smem_a);
    // coord -> index
    auto smem_c_index_func = [&](int m_idx, int n_idx) {
      int group_rows = 32 / cta_mma_n;
      int group_cnt = 2;
      return (m_idx % group_rows * cta_mma_n) + (m_idx / group_rows * (32 + group_cnt)) + n_idx;
    };
    constexpr int cosize_smem_c = ((tile_m * cta_mma_n) / 32) * (32 + 2);

// This should be optimized to STS.64 but can not be STS.128 due to the bank index.
#pragma unroll
    for (int m_idx_thread = 0; m_idx_thread < thread_m; m_idx_thread++) {
#pragma unroll
      for (int n_idx_thread = 0; n_idx_thread < thread_n; n_idx_thread++) {
        int m_idx = (lane_idx / 4) + m_idx_thread * 8;
        int n_idx = ((lane_idx % 4) * 2) + (n_idx_thread % 2) + (n_idx_thread / 2) * 8;
        smem_c[cosize_smem_c * warp_idx + smem_c_index_func(m_idx, n_idx)] = acc_reg_reorg[m_idx_thread][n_idx_thread];
      }
    }
    asm volatile("bar.sync %0, %1;" : : "r"(1), "r"(thread_cnt));

    if (warp_idx == 0) {
      constexpr int final_acc_reg_cnt = (tile_m * tile_n + 31) / 32;
      float acc_final[final_acc_reg_cnt]{};

#pragma unroll
      for (int reg_idx = 0; reg_idx < final_acc_reg_cnt; reg_idx++) {
        int linear_idx = reg_idx * 32 + lane_idx;
        int m_idx = linear_idx % tile_m;
        int n_idx = linear_idx / tile_m;
        acc_final[reg_idx] += smem_c[smem_c_index_func(m_idx, n_idx) + 0 * cosize_smem_c] +
                              smem_c[smem_c_index_func(m_idx, n_idx) + 1 * cosize_smem_c] +
                              smem_c[smem_c_index_func(m_idx, n_idx) + 2 * cosize_smem_c] +
                              smem_c[smem_c_index_func(m_idx, n_idx) + 3 * cosize_smem_c];
      }

#pragma unroll
      for (int reg_idx = 0; reg_idx < final_acc_reg_cnt; reg_idx++) {
        int linear_idx = reg_idx * 32 + lane_idx;
        int m_idx = linear_idx % tile_m;
        int n_idx = linear_idx / tile_m;
        if (m_idx < tile_m && n_idx < gemm_n) {
          gmem_c[n_idx * gemm_m + m_idx] = acc_final[reg_idx];
        }
      }
    }
#endif
  }

  bf16_t* gmem_c;
  bf16_t* smem_a;
  bf16_t* smem_b;
  uint64_t* smem_barrier;
  int warp_idx;
  int gemm_n;
  int stage_idx = 0;
  int phase_bit = 0;
  int lane_idx = threadIdx.x % 32;
  int warp_k_offset_in_tile_k = warp_idx * per_warp_tile_k;

  int a_smem_offsets[m_iter_cnt][k_phase_cnt];
  int b_smem_offsets[n_iter_cnt][k_phase_cnt];

  bf16_t a_reg[m_iter_cnt][k_phase_cnt][8];
  bf16_t b_reg[n_iter_cnt][k_phase_cnt][4];
  float acc_reg[m_iter_cnt][n_iter_cnt][4]{};
};

// AB swapped, kernel is k-major, k-major, m-major
template <int batch_size, int gemm_m, int gemm_k, int tile_m, int tile_n, int tile_k, int stage_cnt>
__global__ __launch_bounds__(256, 1) void fused_a_gemm_kernel(
    bf16_t* output, bf16_t const* mat_a, bf16_t const* mat_b, int gemm_n) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
  constexpr int load_thread_cnt = 128;
  constexpr int compute_thread_cnt = 128;
  constexpr int thread_cnt = load_thread_cnt + compute_thread_cnt;
  (void)thread_cnt;
  static_assert(gemm_m % 16 == 0);
  static_assert(gemm_k % tile_k == 0);
  static_assert(gemm_m % tile_m == 0);
  static_assert(
      tile_k == 128 || tile_k == 256 || tile_k == 512 ||
      tile_k == 1024);  // tile_k must be larger than 64 since 4 warp splitK.
  static_assert(tile_m == 16);
  constexpr int g2s_vec_bytes = 16;
  constexpr int a_elem_bytes = 2;
  constexpr int b_elem_bytes = 2;
  // constexpr int c_elem_bytes = 2;
  static_assert((tile_m * a_elem_bytes + tile_n * b_elem_bytes) * tile_k * stage_cnt <= 225 * 1024);
  static_assert((tile_m * tile_k * a_elem_bytes) % (load_thread_cnt * g2s_vec_bytes) == 0);
  static_assert((tile_n * tile_k * b_elem_bytes) % (load_thread_cnt * g2s_vec_bytes) == 0);

  extern __shared__ char smem[];
  uint64_t* smem_barrier = reinterpret_cast<uint64_t*>(smem);  // producer,consumer; producer,consumer; ...
  bf16_t* smem_a = reinterpret_cast<bf16_t*>(smem + (stage_cnt * 8 * 2 + 1024) / 1024 * 1024);
  bf16_t* smem_b = smem_a + tile_m * tile_k * stage_cnt;

  int cta_m_idx = tile_m * blockIdx.x;
  int cta_n_idx = tile_n * blockIdx.y;
  bf16_t const* gmem_a_local = mat_a + cta_m_idx * gemm_k;
  bf16_t const* gmem_b_local = mat_b + cta_n_idx * gemm_k;
  bf16_t* gmem_c_local = output + cta_n_idx * gemm_m + cta_m_idx;

  int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0);

  if (warp_idx == 4) {
    for (int i = 0; i < stage_cnt; i++) {
      initialize_barrier(smem_barrier + i * 2 + 0, load_thread_cnt);     // producer
      initialize_barrier(smem_barrier + i * 2 + 1, compute_thread_cnt);  // consumer
    }
  }
  __syncthreads();

  if (warp_idx < 2) {
    GmemLoaderA<gemm_k, tile_m, tile_k, stage_cnt> a_loader(gmem_a_local, smem_a, smem_barrier);
    a_loader.prepare();
    a_loader.issue_mainloop();
  } else if (warp_idx < 4) {
    GmemLoaderB<gemm_k, tile_n, tile_k, stage_cnt> b_loader(gmem_b_local, smem_b, smem_barrier, gemm_n);
    b_loader.prepare();
    b_loader.issue_mainloop();
  } else {
    MmaComputer<gemm_m, gemm_k, tile_m, tile_n, tile_k, stage_cnt> mma_computer(
        gmem_c_local, smem_a, smem_b, smem_barrier, warp_idx, gemm_n);
    mma_computer.prepare();
    mma_computer.issue_mainloop();
    mma_computer.epi();
  }
  asm volatile("griddepcontrol.launch_dependents;");
#endif
}

template <typename T, int kHdIn, int kHdOut, int kTileN>
void invokeFusedAGemm(T* output, T const* mat_a, T const* mat_b, int num_tokens, cudaStream_t const stream) {
  constexpr int gemm_m = kHdOut;  // 2112
  int const gemm_n = num_tokens;  // 16
  constexpr int gemm_k = kHdIn;   // 7168
  constexpr int batch_size = 1;
  std::swap(mat_a, mat_b);
  constexpr int tile_m = 16;
  constexpr int tile_n = kTileN;                        // 8 or 16
  constexpr int tile_k = std::max(256, 1024 / tile_n);  // 256
  constexpr int max_stage_cnt = 1024 * 192 / ((tile_m + tile_n) * tile_k * sizeof(bf16_t));
  constexpr int k_iter_cnt = gemm_k / tile_k;
  constexpr int stage_cnt =
      k_iter_cnt > max_stage_cnt ? max_stage_cnt : k_iter_cnt;  // possible tunable for smallK > 1 wave n. // 22
  int cta_m_cnt = gemm_m / tile_m;
  int cta_n_cnt = (gemm_n + tile_n - 1) / tile_n;
  constexpr int barrier_bytes = (stage_cnt * 16 + 1023) / 1024 * 1024;  // 4096
  constexpr int smem_bytes = ((tile_m * 2 + tile_n * 2) * tile_k * stage_cnt + barrier_bytes + 1023) / 1024 * 1024;

  dim3 grid(cta_m_cnt, cta_n_cnt, 1);
  dim3 block_size(256);
  cudaLaunchConfig_t config;
  config.gridDim = grid;
  config.blockDim = block_size;
  config.dynamicSmemBytes = smem_bytes;
  config.stream = stream;
  cudaLaunchAttribute attrs[1];
  attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
  attrs[0].val.programmaticStreamSerializationAllowed = getEnvEnablePDL();
  config.numAttrs = 1;
  config.attrs = attrs;
  if (smem_bytes >= (48 * 1024)) {
    cudaFuncSetAttribute(
        fused_a_gemm_kernel<batch_size, gemm_m, gemm_k, tile_m, tile_n, tile_k, stage_cnt>,
        cudaFuncAttributeMaxDynamicSharedMemorySize,
        smem_bytes);
  }
  cudaLaunchKernelEx(
      &config,
      fused_a_gemm_kernel<batch_size, gemm_m, gemm_k, tile_m, tile_n, tile_k, stage_cnt>,
      output,
      mat_a,
      mat_b,
      gemm_n);
}

template void invokeFusedAGemm<__nv_bfloat16, 7168, 2112, 8>(
    __nv_bfloat16*, __nv_bfloat16 const*, __nv_bfloat16 const*, int num_tokens, cudaStream_t);

template void invokeFusedAGemm<__nv_bfloat16, 7168, 2112, 16>(
    __nv_bfloat16*, __nv_bfloat16 const*, __nv_bfloat16 const*, int num_tokens, cudaStream_t);

void dsv3_fused_a_gemm(torch::Tensor& output, torch::Tensor const& mat_a, torch::Tensor const& mat_b) {
  TORCH_CHECK(mat_a.dim() == 2 && mat_b.dim() == 2 && output.dim() == 2);
  int const num_tokens = mat_a.size(0);
  int const hd_in = mat_a.size(1);
  int const hd_out = mat_b.size(1);

  constexpr int kHdIn = 7168;
  constexpr int kHdOut = 2112;
  TORCH_CHECK(num_tokens >= 1 && num_tokens <= 16, "required 1 <= mat_a.shape[0] <= 16")
  TORCH_CHECK(hd_in == kHdIn, "required mat_a.shape[1] == 7168")
  TORCH_CHECK(hd_out == kHdOut, "required mat_b.shape[1] == 2112")
  TORCH_CHECK(output.size(0) == num_tokens, "required output.shape[0] == mat_a.shape[0]")
  TORCH_CHECK(output.size(1) == hd_out, "required output.shape[1] == mat_b.shape[1]")

643
644
645
  TORCH_CHECK(mat_a.stride(1) == 1, "mat_a must be a row major tensor");     // Row-major
  TORCH_CHECK(output.stride(1) == 1, "output must be a row major tensor");   // Row-major
  TORCH_CHECK(mat_b.stride(0) == 1, "mat_b must be a column major tensor");  // Column-major
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

  auto const data_type = mat_a.scalar_type();
  TORCH_CHECK(
      mat_a.scalar_type() == torch::kBFloat16 && mat_b.scalar_type() == torch::kBFloat16,
      "Only BFloat16 input dtype is supported")
  TORCH_CHECK(output.scalar_type() == torch::kBFloat16, "Only BFloat16 output dtype is supported")

  auto const sm = getSMVersion();
  TORCH_CHECK(sm >= 90, "required CUDA ARCH >= SM_90");

  auto stream = at::cuda::getCurrentCUDAStream(mat_a.get_device());
  if (num_tokens <= 8) {
    invokeFusedAGemm<__nv_bfloat16, kHdIn, kHdOut, 8>(
        reinterpret_cast<__nv_bfloat16*>(output.mutable_data_ptr()),
        reinterpret_cast<__nv_bfloat16 const*>(mat_a.data_ptr()),
        reinterpret_cast<__nv_bfloat16 const*>(mat_b.data_ptr()),
        num_tokens,
        stream);
  } else {
    invokeFusedAGemm<__nv_bfloat16, kHdIn, kHdOut, 16>(
        reinterpret_cast<__nv_bfloat16*>(output.mutable_data_ptr()),
        reinterpret_cast<__nv_bfloat16 const*>(mat_a.data_ptr()),
        reinterpret_cast<__nv_bfloat16 const*>(mat_b.data_ptr()),
        num_tokens,
        stream);
  }
}