fp8_blockwise_gemm_kernel.cu 11.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <ATen/cuda/CUDAContext.h>
#include <cudaTypedefs.h>
#include <cutlass/arch/arch.h>
#include <cutlass/arch/memory.h>
#include <cutlass/arch/mma.h>
#include <cutlass/array.h>
#include <cutlass/cutlass.h>
#include <cutlass/epilogue/thread/activation.h>
#include <cutlass/epilogue/thread/linear_combination.h>
#include <cutlass/epilogue/threadblock/default_thread_map_tensor_op.h>
#include <cutlass/gemm/device/gemm.h>
#include <cutlass/gemm/device/gemm_universal_adapter.h>
#include <cutlass/gemm/gemm.h>
#include <cutlass/gemm/kernel/default_gemm_universal_with_visitor.h>
#include <cutlass/gemm/thread/mma.h>
#include <cutlass/layout/matrix.h>
#include <cutlass/matrix_coord.h>
#include <cutlass/numeric_types.h>
#include <cutlass/tensor_ref.h>
20
21
#include <cutlass/util/host_tensor.h>
#include <cutlass/util/tensor_view_io.h>
22
23
24
25
26
27
28
29
30
31
32
#include <torch/all.h>

#include <cute/tensor.hpp>
#include <cutlass/epilogue/collective/collective_builder.hpp>
#include <cutlass/epilogue/collective/default_epilogue.hpp>
#include <cutlass/epilogue/threadblock/fusion/visitors.hpp>
#include <cutlass/gemm/collective/collective_builder.hpp>
#include <cutlass/gemm/dispatch_policy.hpp>
#include <cutlass/gemm/kernel/gemm_universal.hpp>
#include <cutlass/util/packed_stride.hpp>

33
34
#include "cutlass_extensions/gemm/cutlass_gemm_caller.cuh"
#include "cutlass_extensions/gemm/fp8_blockwise_gemm_sm90_dispatch.cuh"
35
36
37
38
#include "utils.h"

using namespace cute;

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
template <
    typename OutType,
    typename MmaTileShape,
    typename PerSmTileShape,
    typename EpilogueTileShape,
    typename ScalesPerTile,
    int TileSizeM_ = 128,
    class ClusterShape = Shape<_1, _1, _1>>
void launch_sm100_fp8_blockwise_scaled_mm(
    torch::Tensor& out,
    const torch::Tensor& a,
    const torch::Tensor& b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b) {
  static constexpr int ScaleMsPerTile = size<0>(ScalesPerTile{});
  static constexpr int ScaleGranularityM = size<0>(MmaTileShape{}) / ScaleMsPerTile;
  static constexpr int ScaleGranularityN = size<1>(MmaTileShape{}) / size<1>(ScalesPerTile{});
  static constexpr int ScaleGranularityK = size<2>(MmaTileShape{}) / size<2>(ScalesPerTile{});

  using ElementAB = cutlass::float_e4m3_t;
  using ElementA = ElementAB;
  using ElementB = ElementAB;
  using ElementC = void;
  using ElementD = OutType;
  using LayoutA = cutlass::layout::RowMajor;
  using LayoutB = cutlass::layout::ColumnMajor;
  using LayoutD = cutlass::layout::RowMajor;
  using LayoutC = LayoutD;
  // This means both SFA and SFB are column-major.
  using ScaleConfig = cutlass::detail::Sm100BlockwiseScaleConfig<
      ScaleGranularityM,
      ScaleGranularityN,
      ScaleGranularityK,
      cute::UMMA::Major::MN,
      cute::UMMA::Major::K>;
  using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
  using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());

  static constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
  static constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
  static constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
  static constexpr int AlignmentC = AlignmentD;

  using ElementAccumulator = float;
  using ElementBlockScale = float;
  using ElementCompute = float;
  using ArchTag = cutlass::arch::Sm100;
  using OperatorClass = cutlass::arch::OpClassTensorOp;

  using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
      ArchTag,
      cutlass::arch::OpClassTensorOp,
      PerSmTileShape,
      ClusterShape,
      EpilogueTileShape,
      ElementAccumulator,
      ElementCompute,
      ElementC,
      LayoutC,
      AlignmentC,
      ElementD,
      LayoutD,
      AlignmentD,
      cutlass::epilogue::TmaWarpSpecialized1Sm>::CollectiveOp;

  using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
      ArchTag,
      OperatorClass,
      ElementA,
      cute::tuple<LayoutA, LayoutSFA>,
      AlignmentA,
      ElementB,
      cute::tuple<LayoutB, LayoutSFB>,
      AlignmentB,
      ElementAccumulator,
      MmaTileShape,
      ClusterShape,
      cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
          sizeof(typename CollectiveEpilogue::SharedStorage))>,
      cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>::CollectiveOp;

  using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
      Shape<int, int, int, int>,
      CollectiveMainloop,
      CollectiveEpilogue,
      cutlass::gemm::PersistentScheduler>;
  using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;

  Gemm gemm_op;

  int m = a.size(0);
  int k = a.size(1);
  int n = b.size(1);

  auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
  auto b_ptr = static_cast<ElementAB*>(b.data_ptr());
  auto scales_a_ptr = static_cast<float*>(scales_a.data_ptr());
  auto scales_b_ptr = static_cast<float*>(scales_b.data_ptr());
  auto c_ptr = static_cast<ElementD*>(out.data_ptr());

  using StrideA = typename GemmKernel::StrideA;
  using StrideB = typename GemmKernel::StrideB;
  using StrideD = typename GemmKernel::StrideD;
  using StrideC = typename GemmKernel::StrideD;

  StrideA a_stride = cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(m, k, 1));
  StrideB b_stride = cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(n, k, 1));
  StrideC c_stride = cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(m, n, 1));
  LayoutSFA layout_SFA = ScaleConfig::tile_atom_to_shape_SFA(make_shape(m, n, k, 1));
  LayoutSFB layout_SFB = ScaleConfig::tile_atom_to_shape_SFB(make_shape(m, n, k, 1));

  typename GemmKernel::MainloopArguments mainloop_args{
      a_ptr, a_stride, b_ptr, b_stride, scales_a_ptr, layout_SFA, scales_b_ptr, layout_SFB};

  typename GemmKernel::EpilogueArguments epilogue_args{{}, c_ptr, c_stride, c_ptr, c_stride};
  epilogue_args.thread.alpha = 1.0f;

  typename GemmKernel::Arguments args = {
      cutlass::gemm::GemmUniversalMode::kGemm, {m, n, k, 1}, mainloop_args, epilogue_args};

  auto can_implement = gemm_op.can_implement(args);
  TORCH_CHECK(can_implement == cutlass::Status::kSuccess, cutlassGetStatusString(can_implement))

  size_t workspace_size = gemm_op.get_workspace_size(args);
  cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);

  auto init_status = gemm_op.initialize(args, workspace.get());
  TORCH_CHECK(init_status == cutlass::Status::kSuccess, cutlassGetStatusString(init_status));

  auto stream = at::cuda::getCurrentCUDAStream(a.get_device());

  auto status = gemm_op.run(stream);
  TORCH_CHECK(status == cutlass::Status::kSuccess, cutlassGetStatusString(status))
}

template <typename OutType>
void sm100_fp8_blockwise_dispatch_shape(
    torch::Tensor& out,
    const torch::Tensor& a,
    const torch::Tensor& b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b) {
  if (a.size(0) <= 128) {
    using MmaTileShape = Shape<_64, _128, _128>;
    using PerSmTileShape = Shape<_64, _128, _128>;
    using EpilogueTileShape = Shape<_64, _64>;
    using ScalesPerTile = Shape<_64, _1, _1>;
    launch_sm100_fp8_blockwise_scaled_mm<OutType, MmaTileShape, PerSmTileShape, EpilogueTileShape, ScalesPerTile>(
        out, a, b, scales_a, scales_b);
  } else {
    using MmaTileShape = Shape<_128, _128, _128>;
    using PerSmTileShape = Shape<_128, _128, _128>;
    using EpilogueTileShape = Shape<_128, _64>;
    using ScalesPerTile = Shape<_128, _1, _1>;
    launch_sm100_fp8_blockwise_scaled_mm<OutType, MmaTileShape, PerSmTileShape, EpilogueTileShape, ScalesPerTile>(
        out, a, b, scales_a, scales_b);
  }
}

198
199
200
201
202
203
torch::Tensor fp8_blockwise_scaled_mm(
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Dtype& out_dtype) {
204
205
206
207
208
  TORCH_CHECK(mat_a.is_cuda(), "mat_a must be a CUDA tensor");
  TORCH_CHECK(mat_b.is_cuda(), "mat_b must be a CUDA tensor");
  TORCH_CHECK(mat_a.dim() == 2, "mat_a must be a 2D tensor");
  TORCH_CHECK(mat_b.dim() == 2, "mat_b must be a 2D tensor");
  TORCH_CHECK(mat_a.stride(1) == 1, "mat_a must be a row major tensor");
209
  TORCH_CHECK(mat_b.stride(0) == 1, "mat_b must be a column major tensor");
210
211
  TORCH_CHECK(mat_a.size(1) == mat_b.size(0), "mat_a and mat_b shapes cannot be multiplied");

212
213
214
215
  TORCH_CHECK(
      (mat_a.size(1) * mat_a.element_size()) % 16 == 0, "mat_a must be multiple of 16 bytes for memory alignment");
  TORCH_CHECK(
      (mat_b.size(0) * mat_b.element_size()) % 16 == 0, "mat_b must be multiple of 16 bytes for memory alignment");
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
  TORCH_CHECK(mat_a.scalar_type() == torch::kFloat8_e4m3fn, "mat_a must be Float8_e4m3fn");
  TORCH_CHECK(mat_b.scalar_type() == torch::kFloat8_e4m3fn, "mat_b must be Float8_e4m3fn");
  TORCH_CHECK(out_dtype == torch::kHalf || out_dtype == torch::kBFloat16, "out_dtype must be Half or BFloat16");

  auto is_contiguous_vector = [](const torch::Tensor& t) {
    auto t_sizes = t.sizes();
    return t.is_contiguous() &&
           (t.dim() == 1 || (t.dim() == 2 && *std::min_element(t_sizes.begin(), t_sizes.end()) == 1));
  };

  TORCH_CHECK(mat_a.size(0) == scales_a.size(0), "size of scales_a is not matched");
  TORCH_CHECK(mat_a.size(1) / 128 == scales_a.size(1), "size of scales_a is not matched");
  TORCH_CHECK(scales_a.stride(0) == 1 || is_contiguous_vector(scales_a), "scales_a must be M major");
  TORCH_CHECK(mat_b.size(0) / 128 == scales_b.size(0), "size of scales_b is not matched");
  TORCH_CHECK(mat_b.size(1) / 128 == scales_b.size(1), "size of scales_b is not matched");
  TORCH_CHECK(scales_b.stride(0) == 1 || is_contiguous_vector(scales_b), "scales_b must be K major");
  TORCH_CHECK(scales_a.scalar_type() == torch::kFloat32, "scales_a must be Float32");
  TORCH_CHECK(scales_b.scalar_type() == torch::kFloat32, "scales_b must be Float32");

  torch::Tensor out = torch::empty({mat_a.size(0), mat_b.size(1)}, mat_a.options().dtype(out_dtype));
  TORCH_CHECK((out.size(1) * out.element_size()) % 16 == 0, "out must be multiple of 16 bytes for memory alignment");

  auto sm_version = getSMVersion();

240
241
242
243
244
  int64_t original_rows = mat_a.size(0);
  torch::Tensor mat_a_padded = pad_tensor(mat_a, /*alignment=*/4);
  torch::Tensor scales_a_padded = pad_tensor(scales_a, /*alignment=*/4, /*col_major=*/true);
  torch::Tensor out_padded = torch::empty({mat_a_padded.size(0), mat_b.size(1)}, out.options());

245
246
#if defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
#if defined CUDA_VERSION && CUDA_VERSION >= 12000
247
  if (sm_version == 90) {
248
    torch::Tensor scales_b_contiguous = scales_b.contiguous();
249
    if (out_dtype == torch::kBFloat16) {
250
      cutlass_gemm_blockwise_sm90_fp8_dispatch<cutlass::bfloat16_t>(
251
          out_padded, mat_a_padded, mat_b, scales_a_padded, scales_b_contiguous);
252
    } else {
253
      cutlass_gemm_blockwise_sm90_fp8_dispatch<cutlass::half_t>(
254
          out_padded, mat_a_padded, mat_b, scales_a_padded, scales_b_contiguous);
255
    }
256
    return out_padded.slice(0, 0, original_rows);
257
258
259
260
  }
#endif
#endif

261
262
263
264
265
266
267
268
269
270
271
272
273
#if defined(CUTLASS_ARCH_MMA_SM100A_SUPPORTED) || defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
#if defined CUDA_VERSION && CUDA_VERSION >= 12080
  if (sm_version == 100) {
    if (out_dtype == torch::kBFloat16) {
      sm100_fp8_blockwise_dispatch_shape<cutlass::bfloat16_t>(
          out_padded, mat_a_padded, mat_b, scales_a_padded, scales_b);
    } else {
      sm100_fp8_blockwise_dispatch_shape<cutlass::half_t>(out_padded, mat_a_padded, mat_b, scales_a_padded, scales_b);
    }
    return out_padded.slice(0, 0, original_rows);
  }
#endif
#endif
274
275
  TORCH_CHECK_NOT_IMPLEMENTED(
      false, "No implemented fp8_blockwise_scaled_mm for current compute capability: ", sm_version);
276
}