test_tool_choice.py 20.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
"""
Test script for tool_choice functionality in SGLang
Tests: required, auto, and specific function choices in both streaming and non-streaming modes

python3 -m unittest test_tool_choice.TestToolChoice
"""

import unittest

import openai

from sglang.srt.hf_transformers_utils import get_tokenizer
from sglang.srt.utils import kill_process_tree
from sglang.test.test_utils import (
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    CustomTestCase,
    popen_launch_server,
)


class TestToolChoiceLlama32(CustomTestCase):

    @classmethod
    def setUpClass(cls):
        # Mark flaky tests for this model
        cls.flaky_tests = {
            "test_multi_tool_scenario_auto",
            "test_multi_tool_scenario_required",
        }

        # Use a model that supports function calling
        cls.model = "meta-llama/Llama-3.2-1B-Instruct"
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        # Start the local OpenAI Server with tool calling support
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=[
                "--tool-call-parser",
                "llama3",  # Default parser for the test model
            ],
        )
        cls.base_url += "/v1"
        cls.tokenizer = get_tokenizer(cls.model)

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def setUp(self):
        self.client = openai.Client(base_url=self.base_url, api_key=self.api_key)
        self.model_name = self.client.models.list().data[0].id

    def _is_flaky_test(self):
        """Check if the current test is marked as flaky for this class"""
        return (
            hasattr(self.__class__, "flaky_tests")
            and self._testMethodName in self.__class__.flaky_tests
        )

    def get_test_tools(self):
        """Get the test tools for function calling"""
        return [
            {
                "type": "function",
                "function": {
                    "name": "get_weather",
                    "description": "use this to get latest weather information for a city given its name",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "city": {
                                "type": "string",
                                "description": "name of the city to get weather for",
                            }
                        },
                        "required": ["city"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "get_pokemon_info",
                    "description": "get detailed information about a pokemon given its name",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "name": {
                                "type": "string",
                                "description": "name of the pokemon to get info for",
                            }
                        },
                        "required": ["name"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "make_next_step_decision",
                    "description": "You will be given a trace of thinking process in the following format.\n\nQuestion: the input question you must answer\nTOOL: think about what to do, and choose a tool to use ONLY IF there are defined tools. \n  You should never call the same tool with the same input twice in a row.\n  If the previous conversation history already contains the information that can be retrieved from the tool, you should not call the tool again.\nOBSERVATION: the result of the tool call, NEVER include this in your response, this information will be provided\n... (this TOOL/OBSERVATION can repeat N times)\nANSWER: If you know the answer to the original question, require for more information,\n  or you don't know the answer and there are no defined tools or all available tools are not helpful, respond with the answer without mentioning anything else.\n  If the previous conversation history already contains the answer, respond with the answer right away.\n\n  If no tools are configured, naturally mention this limitation while still being helpful. Briefly note that adding tools in the agent configuration would expand capabilities.\n\nYour task is to respond with the next step to take, based on the traces, \nor answer the question if you have enough information.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "decision": {
                                "type": "string",
                                "description": 'The next step to take, it must be either "TOOL" or "ANSWER". If the previous conversation history already contains the information that can be retrieved from the tool, you should not call the tool again. If there are no defined tools, you should not return "TOOL" in your response.',
                            },
                            "content": {
                                "type": "string",
                                "description": 'The content of the next step. If the decision is "TOOL", this should be a short and concise reasoning of why you chose the tool, MUST include the tool name. If the decision is "ANSWER", this should be the answer to the question. If no tools are available, integrate this limitation conversationally without sounding scripted.',
                            },
                        },
                        "required": ["decision", "content"],
                    },
                },
            },
        ]

    def get_test_messages(self):
        """Get test messages that should trigger tool usage"""
        return [
            {
                "role": "user",
                "content": "Answer the following questions as best you can:\n\nYou will be given a trace of thinking process in the following format.\n\nQuestion: the input question you must answer\nTOOL: think about what to do, and choose a tool to use ONLY IF there are defined tools\nOBSERVATION: the result of the tool call or the observation of the current task, NEVER include this in your response, this information will be provided\n... (this TOOL/OBSERVATION can repeat N times)\nANSWER: If you know the answer to the original question, require for more information, \nif the previous conversation history already contains the answer, \nor you don't know the answer and there are no defined tools or all available tools are not helpful, respond with the answer without mentioning anything else.\nYou may use light Markdown formatting to improve clarity (e.g. lists, **bold**, *italics*), but keep it minimal and unobtrusive.\n\nYour task is to respond with the next step to take, based on the traces, \nor answer the question if you have enough information.\n\nQuestion: what is the weather in top 5 populated cities in the US?\n\nTraces:\n\n\nThese are some additional instructions that you should follow:",
            }
        ]

    def get_travel_tools(self):
        """Get tools for travel assistant scenario that should trigger multiple tool calls"""
        return [
            {
                "type": "function",
                "function": {
                    "name": "get_weather",
                    "description": "Get the current weather for a given location.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "location": {
                                "type": "string",
                                "description": "The name of the city or location.",
                            },
                            "unit": {
                                "type": "string",
                                "enum": ["celsius", "fahrenheit"],
                            },
                        },
                        "required": ["location", "unit"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "get_tourist_attractions",
                    "description": "Get a list of top tourist attractions for a given city.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "city": {
                                "type": "string",
                                "description": "The name of the city to find attractions for.",
                            }
                        },
                        "required": ["city"],
                    },
                },
            },
        ]

    def get_travel_messages(self):
        """Get travel assistant messages that should trigger multiple tool calls"""
        return [
            {
                "content": "You are a travel assistant providing real-time weather updates and top tourist attractions.",
                "role": "system",
            },
            {
                "content": "I'm planning a trip to Tokyo next week. What's the weather like? What are the most amazing sights?",
                "role": "user",
            },
        ]

    def test_tool_choice_auto_non_streaming(self):
        """Test tool_choice='auto' in non-streaming mode"""
        tools = self.get_test_tools()
        messages = self.get_test_messages()

        response = self.client.chat.completions.create(
            model=self.model_name,
            messages=messages,
            max_tokens=400,
            tools=tools,
            tool_choice="auto",
            stream=False,
        )

        self.assertIsNotNone(response.choices[0].message)
        # With auto, tool calls are optional

    def test_tool_choice_auto_streaming(self):
        """Test tool_choice='auto' in streaming mode"""
        tools = self.get_test_tools()
        messages = self.get_test_messages()

        response = self.client.chat.completions.create(
            model=self.model_name,
            messages=messages,
            max_tokens=400,
            tools=tools,
            tool_choice="auto",
            stream=True,
        )

        # Collect streaming response
        content_chunks = []
        tool_call_chunks = []

        for chunk in response:
            if chunk.choices[0].delta.content:
                content_chunks.append(chunk.choices[0].delta.content)
            elif chunk.choices[0].delta.tool_calls:
                tool_call_chunks.extend(chunk.choices[0].delta.tool_calls)

        # Should complete without errors
        self.assertIsInstance(content_chunks, list)
        self.assertIsInstance(tool_call_chunks, list)

    def test_tool_choice_required_non_streaming(self):
        """Test tool_choice='required' in non-streaming mode"""
        tools = self.get_test_tools()
        messages = self.get_test_messages()

        response = self.client.chat.completions.create(
            model=self.model_name,
            messages=messages,
            max_tokens=400,
            temperature=0.2,
            tools=tools,
            tool_choice="required",
            stream=False,
        )

        # With required, we should get tool calls
        tool_calls = response.choices[0].message.tool_calls
        self.assertIsNotNone(tool_calls)
        self.assertGreater(len(tool_calls), 0)

    def test_tool_choice_required_streaming(self):
        """Test tool_choice='required' in streaming mode"""
        tools = self.get_test_tools()
        messages = self.get_test_messages()

        response = self.client.chat.completions.create(
            model=self.model_name,
            messages=messages,
            max_tokens=400,
            tools=tools,
            tool_choice="required",
            stream=True,
        )

        # Collect streaming response
        tool_call_chunks = []

        for chunk in response:
            if chunk.choices[0].delta.tool_calls:
                tool_call_chunks.extend(chunk.choices[0].delta.tool_calls)

        # With required, we should get tool call chunks
        self.assertGreater(len(tool_call_chunks), 0)

    def test_tool_choice_specific_function_non_streaming(self):
        """Test tool_choice with specific function in non-streaming mode"""
        tools = self.get_test_tools()
        messages = self.get_test_messages()

        tool_choice = {"type": "function", "function": {"name": "get_weather"}}

        response = self.client.chat.completions.create(
            model=self.model_name,
            messages=messages,
            max_tokens=200,
            tools=tools,
            tool_choice=tool_choice,
            stream=False,
        )

        # Should call the specific function
        tool_calls = response.choices[0].message.tool_calls
        self.assertIsNotNone(tool_calls)
        # Our messages ask the top 5 populated cities in the US, so the model could get 5 tool calls
        self.assertGreaterEqual(len(tool_calls), 1)
        for tool_call in tool_calls:
            self.assertEqual(tool_call.function.name, "get_weather")

    def test_tool_choice_specific_function_streaming(self):
        """Test tool_choice with specific function in streaming mode"""
        tools = self.get_test_tools()
        messages = self.get_test_messages()

        tool_choice = {"type": "function", "function": {"name": "get_weather"}}

        response = self.client.chat.completions.create(
            model=self.model_name,
            messages=messages,
            max_tokens=200,
            tools=tools,
            tool_choice=tool_choice,
            stream=True,
        )

        # Collect streaming response
        tool_call_chunks = []

        for chunk in response:
            if chunk.choices[0].delta.tool_calls:
                tool_call_chunks.extend(chunk.choices[0].delta.tool_calls)

        # Should get tool call chunks for the specific function
        self.assertGreater(len(tool_call_chunks), 0)

        # Find function name in chunks
        found_name = None
        for chunk in tool_call_chunks:
            if chunk.function and chunk.function.name:
                found_name = chunk.function.name
                break

        self.assertEqual(found_name, "get_weather")

    def test_multi_tool_scenario_auto(self):
        """Test multi-tool scenario with tool_choice='auto'"""
        tools = self.get_travel_tools()
        messages = self.get_travel_messages()

        response = self.client.chat.completions.create(
            model=self.model_name,
            messages=messages,
            max_tokens=400,
            temperature=0.2,
            tools=tools,
            tool_choice="auto",
            stream=False,
        )

        # Should complete without errors
        self.assertIsNotNone(response.choices[0].message)

        tool_calls = response.choices[0].message.tool_calls
        expected_functions = {"get_weather", "get_tourist_attractions"}

        if self._is_flaky_test():
            # For flaky tests, just verify all called functions are available tools
            if tool_calls:
                available_names = [tool["function"]["name"] for tool in tools]
                for call in tool_calls:
                    self.assertIn(call.function.name, available_names)
        else:
            # For non-flaky tests, enforce strict requirements
            self.assertIsNotNone(tool_calls, "Expected tool calls but got none")
            self.assertEqual(
                len(tool_calls), 2, f"Expected 2 tool calls, got {len(tool_calls)}"
            )

            called_functions = {call.function.name for call in tool_calls}
            self.assertEqual(
                called_functions,
                expected_functions,
                f"Expected functions {expected_functions}, got {called_functions}",
            )

    def test_multi_tool_scenario_required(self):
        """Test multi-tool scenario with tool_choice='required'"""
        tools = self.get_travel_tools()
        messages = self.get_travel_messages()

        response = self.client.chat.completions.create(
            model=self.model_name,
            messages=messages,
            max_tokens=400,
            temperature=0.2,
            tools=tools,
            tool_choice="required",
            stream=False,
        )

        # With required, we should get at least one tool call
        tool_calls = response.choices[0].message.tool_calls
        self.assertIsNotNone(tool_calls)
        self.assertGreater(len(tool_calls), 0)

        # Verify all called functions are available tools
        available_names = [tool["function"]["name"] for tool in tools]
        expected_functions = {"get_weather", "get_tourist_attractions"}

        if self._is_flaky_test():
            # For flaky tests, just ensure basic functionality works
            self.assertGreater(
                len(tool_calls),
                0,
                f"Expected at least 1 tool call, got {len(tool_calls)}",
            )
            for call in tool_calls:
                self.assertIn(call.function.name, available_names)
        else:
            # For non-flaky tests, enforce strict requirements
            self.assertEqual(
                len(tool_calls), 2, f"Expected 2 tool calls, got {len(tool_calls)}"
            )

            called_functions = {call.function.name for call in tool_calls}
            self.assertEqual(
                called_functions,
                expected_functions,
                f"Expected functions {expected_functions}, got {called_functions}",
            )

    def test_error_handling_invalid_tool_choice(self):
        """Test error handling for invalid tool_choice"""
        import logging
        from unittest.mock import patch

        tools = self.get_test_tools()
        messages = self.get_test_messages()

        # Test with invalid function name
        tool_choice = {"type": "function", "function": {"name": "nonexistent_function"}}

        # The behavior could be either:
        # 1. Log a warning and continue (if fallback is implemented)
        # 2. Raise an exception (if strict validation is implemented)

        # First try to capture any logging that might happen
        with patch("logging.warning") as mock_warning:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=messages,
                max_tokens=200,
                tools=tools,
                tool_choice=tool_choice,
                stream=False,
            )

            self.assertIsNotNone(response.choices[0].message)

            if mock_warning.called:
                warning_message = mock_warning.call_args[0][0]
                self.assertIn("nonexistent_function", warning_message)


class TestToolChoiceQwen25(TestToolChoiceLlama32):
    """Test tool_choice functionality with Qwen2.5 model"""

    @classmethod
    def setUpClass(cls):
        cls.flaky_tests = {
            "test_multi_tool_scenario_auto",
            "test_multi_tool_scenario_required",
        }

        cls.model = "Qwen/Qwen2.5-7B-Instruct"
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=[
                "--tool-call-parser",
                "qwen25",
            ],
        )
        cls.base_url += "/v1"
        cls.tokenizer = get_tokenizer(cls.model)


class TestToolChoiceMistral(TestToolChoiceLlama32):
    """Test tool_choice functionality with Mistral model"""

    @classmethod
    def setUpClass(cls):
        # Mark flaky tests for this model
        cls.flaky_tests = {
            "test_multi_tool_scenario_auto",
            "test_multi_tool_scenario_required",
        }

        cls.model = "mistralai/Mistral-7B-Instruct-v0.3"
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=[
                "--tool-call-parser",
                "mistral",
            ],
        )
        cls.base_url += "/v1"
        cls.tokenizer = get_tokenizer(cls.model)


if __name__ == "__main__":
    unittest.main()