bench_throughput.py 11.6 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
"""Benchmark online serving throughput.

On the server side, run one of the following commands:
    (vLLM backend)
    python -m vllm.entrypoints.api_server \
        --model <your_model> --swap-space 16 \
        --disable-log-requests

    (TGI backend)
    ./launch_hf_server.sh <your_model>

On the client side, run:
    python benchmarks/benchmark_serving.py \
        --backend <backend> \
        --tokenizer <your_model> --dataset <target_dataset> \
        --request-rate <request_rate>
"""
Liangsheng Yin's avatar
Liangsheng Yin committed
18

Lianmin Zheng's avatar
Lianmin Zheng committed
19
20
21
import argparse
import asyncio
import json
22
import os
Lianmin Zheng's avatar
Lianmin Zheng committed
23
24
25
26
27
28
import random
import time
from typing import AsyncGenerator, List, Tuple

import aiohttp
import numpy as np
Liangsheng Yin's avatar
Liangsheng Yin committed
29
from tqdm.asyncio import tqdm_asyncio
30
from transformers import AutoTokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
31
32
33
34
35
36
37
38

# (prompt len, output len, latency)
REQUEST_LATENCY: List[Tuple[int, int, float]] = []


def sample_requests(
    dataset_path: str,
    num_requests: int,
39
    tokenizer: AutoTokenizer,
Lianmin Zheng's avatar
Lianmin Zheng committed
40
) -> List[Tuple[str, int, int]]:
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    def load_dataset():
        with open(dataset_path, encoding="utf-8") as f:
            dataset = json.load(f)
        # Filter out the conversations with less than 2 turns.
        dataset = [data for data in dataset if len(data["conversations"]) >= 2]
        # Only keep the first two turns of each conversation.
        dataset = [
            (data["conversations"][0]["value"], data["conversations"][1]["value"])
            for data in dataset
        ]

        # Tokenize the prompts and completions.
        prompts = [prompt for prompt, _ in dataset]
        prompt_token_ids = tokenizer(prompts).input_ids
        completions = [completion for _, completion in dataset]
        completion_token_ids = tokenizer(completions).input_ids
        tokenized_dataset = []
        for i in range(len(dataset)):
            output_len = len(completion_token_ids[i])
            tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))

        # Filter out too long sequences.
        filtered_dataset: List[Tuple[str, int, int]] = []
        for prompt, prompt_token_ids, output_len in tokenized_dataset:
            prompt_len = len(prompt_token_ids)
            if prompt_len < 4 or output_len < 4:
                # Prune too short sequences.
                # This is because TGI causes errors when the input or output length
                # is too short.
                continue
            if prompt_len > 1024 or prompt_len + output_len > 2048:
                # Prune too long sequences.
                continue
            filtered_dataset.append((prompt, prompt_len, output_len))

        return filtered_dataset

    try:
        from diskcache import Cache

        home_dir = os.path.expanduser("~")
        cache = Cache(f"{home_dir}/.cache/sglang")
        with Cache(cache.directory) as reference:
            reference_key = f"{dataset_path}_{tokenizer.name_or_path}"
            if reference_key in reference:
                print("Reading dataset from cache...")
                dataset = reference[reference_key]
            else:
                dataset = load_dataset()
                reference[reference_key] = dataset
    except ImportError:
        dataset = load_dataset()
Lianmin Zheng's avatar
Lianmin Zheng committed
94
95

    # Sample the requests.
96
    sampled_requests = random.sample(dataset, num_requests)
Lianmin Zheng's avatar
Lianmin Zheng committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    return sampled_requests


async def get_request(
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
    input_requests = iter(input_requests)
    for request in input_requests:
        yield request

        if request_rate == float("inf"):
            # If the request rate is infinity, then we don't need to wait.
            continue
        # Sample the request interval from the exponential distribution.
        interval = np.random.exponential(1.0 / request_rate)
        # The next request will be sent after the interval.
        await asyncio.sleep(interval)


async def send_request(
    backend: str,
    api_url: str,
    prompt: str,
    prompt_len: int,
    output_len: int,
    best_of: int,
    use_beam_search: bool,
) -> None:
    request_start_time = time.perf_counter()

    headers = {"User-Agent": "Benchmark Client"}
    if backend == "vllm":
        pload = {
            "prompt": prompt,
            "n": 1,
            "best_of": best_of,
            "use_beam_search": use_beam_search,
            "temperature": 0.0 if use_beam_search else 1.0,
            "top_p": 1.0,
            "max_tokens": output_len,
            "ignore_eos": True,
            "stream": False,
        }
    elif backend == "tgi":
        assert not use_beam_search
        params = {
            "best_of": best_of,
            "max_new_tokens": output_len,
            "do_sample": True,
        }
        pload = {
            "inputs": prompt,
            "parameters": params,
        }
    elif backend == "srt":
        assert not use_beam_search
        params = {
            "ignore_eos": True,
            "max_new_tokens": output_len,
        }
        pload = {
            "text": prompt,
            "sampling_params": params,
        }
    elif backend == "lightllm":
        assert not use_beam_search
        params = {
            "ignore_eos": True,
            "max_new_tokens": output_len,
        }
        pload = {
            "inputs": prompt,
            "parameters": params,
        }
Lianmin Zheng's avatar
Lianmin Zheng committed
172
    elif backend == "ginfer":
173
        pass
Lianmin Zheng's avatar
Lianmin Zheng committed
174
175
176
    else:
        raise ValueError(f"Unknown backend: {backend}")

Lianmin Zheng's avatar
Lianmin Zheng committed
177
    if backend != "ginfer":
178
179
180
        timeout = aiohttp.ClientTimeout(total=3 * 3600)
        async with aiohttp.ClientSession(timeout=timeout) as session:
            while True:
181
182
183
                async with session.post(
                    api_url, headers=headers, json=pload
                ) as response:
184
185
186
187
188
                    chunks = []
                    async for chunk, _ in response.content.iter_chunks():
                        chunks.append(chunk)
                output = b"".join(chunks).decode("utf-8")
                output = json.loads(output)
Lianmin Zheng's avatar
Lianmin Zheng committed
189

190
191
192
193
194
195
196
                # Re-send the request if it failed.
                if "error" not in output:
                    break
                else:
                    print(output)
    else:
        import grpc
Lianmin Zheng's avatar
Lianmin Zheng committed
197
        from ginfer import sampler_pb2, sampler_pb2_grpc
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

        api_url = api_url.replace("http://", "").replace("/generate", "")
        sampler_channel = grpc.aio.insecure_channel(api_url)
        sampler = sampler_pb2_grpc.SamplerStub(sampler_channel)

        request_end_time = time.perf_counter()
        sample_request = sampler_pb2.SampleTextRequest(
            prompt=prompt,
            settings=sampler_pb2.SampleSettings(
                max_len=output_len,
                rng_seed=0,
                temperature=0,
                nucleus_p=1,
            ),
        )
        stream = sampler.SampleText(sample_request)
        response = "".join([x.text async for x in stream])
Lianmin Zheng's avatar
Lianmin Zheng committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    request_end_time = time.perf_counter()
    request_latency = request_end_time - request_start_time
    REQUEST_LATENCY.append((prompt_len, output_len, request_latency))


async def benchmark(
    backend: str,
    api_url: str,
    input_requests: List[Tuple[str, int, int]],
    best_of: int,
    use_beam_search: bool,
    request_rate: float,
) -> None:
    tasks: List[asyncio.Task] = []
    async for request in get_request(input_requests, request_rate):
        prompt, prompt_len, output_len = request
Liangsheng Yin's avatar
Liangsheng Yin committed
232
233
234
235
236
237
238
239
240
241
242
        task = asyncio.create_task(
            send_request(
                backend,
                api_url,
                prompt,
                prompt_len,
                output_len,
                best_of,
                use_beam_search,
            )
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
243
244
245
246
247
248
249
250
251
252
        tasks.append(task)
    await tqdm_asyncio.gather(*tasks)


def main(args: argparse.Namespace):
    print(args)
    random.seed(args.seed)
    np.random.seed(args.seed)

    api_url = f"http://{args.host}:{args.port}/generate"
253
254
255
    tokenizer = AutoTokenizer.from_pretrained(
        args.tokenizer, trust_remote_code=args.trust_remote_code
    )
256
257
258
259

    if args.dataset:
        input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
    else:
260
        input_lens = np.random.randint(
261
262
263
264
            int(args.input_len * args.range_ratio),
            args.input_len + 1,
            size=args.num_prompts,
        )
265
        output_lens = np.random.randint(
266
267
268
269
            int(args.output_len * args.range_ratio),
            args.output_len + 1,
            size=args.num_prompts,
        )
270
271
272
        offsets = np.random.randint(0, tokenizer.vocab_size, size=args.num_prompts)
        input_requests = []
        for i in range(args.num_prompts):
273
274
275
276
277
278
            prompt = tokenizer.decode(
                [
                    (offsets[i] + i + j) % tokenizer.vocab_size
                    for j in range(input_lens[i])
                ]
            )
279
            input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
Lianmin Zheng's avatar
Lianmin Zheng committed
280
281

    benchmark_start_time = time.perf_counter()
Liangsheng Yin's avatar
Liangsheng Yin committed
282
283
284
285
286
287
288
289
290
291
    asyncio.run(
        benchmark(
            args.backend,
            api_url,
            input_requests,
            args.best_of,
            args.use_beam_search,
            args.request_rate,
        )
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
292
293
294
295
296
297
298
299
    benchmark_end_time = time.perf_counter()
    benchmark_time = benchmark_end_time - benchmark_start_time
    print(f"Total time: {benchmark_time:.2f} s")
    print(f"Throughput: {args.num_prompts / benchmark_time:.2f} requests/s")

    # Compute the latency statistics.
    avg_latency = np.mean([latency for _, _, latency in REQUEST_LATENCY])
    print(f"Average latency: {avg_latency:.2f} s")
Liangsheng Yin's avatar
Liangsheng Yin committed
300
301
302
303
304
305
    avg_per_token_latency = np.mean(
        [
            latency / (prompt_len + output_len)
            for prompt_len, output_len, latency in REQUEST_LATENCY
        ]
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
306
    print(f"Average latency per token: {avg_per_token_latency:.2f} s")
Liangsheng Yin's avatar
Liangsheng Yin committed
307
308
309
310
    avg_per_output_token_latency = np.mean(
        [latency / output_len for _, output_len, latency in REQUEST_LATENCY]
    )
    print("Average latency per output token: " f"{avg_per_output_token_latency:.2f} s")
Lianmin Zheng's avatar
Lianmin Zheng committed
311
312
313
314


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
Liangsheng Yin's avatar
Liangsheng Yin committed
315
316
317
318
319
        description="Benchmark the online serving throughput."
    )
    parser.add_argument(
        "--backend",
        type=str,
320
        default="srt",
Lianmin Zheng's avatar
Lianmin Zheng committed
321
        choices=["vllm", "tgi", "srt", "lightllm", "ginfer"],
Liangsheng Yin's avatar
Liangsheng Yin committed
322
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
323
    parser.add_argument("--host", type=str, default="localhost")
324
    parser.add_argument("--port", type=int, default=30000)
325
    parser.add_argument("--dataset", type=str, help="Path to the dataset.")
326
327
328
    parser.add_argument("--input-len", type=int, default=2048)
    parser.add_argument("--output-len", type=int, default=256)
    parser.add_argument("--range-ratio", type=float, default=1.0)
Liangsheng Yin's avatar
Liangsheng Yin committed
329
    parser.add_argument(
330
331
        "--tokenizer",
        type=str,
332
        default="NousResearch/Meta-Llama-3-8B",
333
        help="Name or path of the tokenizer.",
Liangsheng Yin's avatar
Liangsheng Yin committed
334
335
336
337
338
339
340
    )
    parser.add_argument(
        "--best-of",
        type=int,
        default=1,
        help="Generates `best_of` sequences per prompt and " "returns the best one.",
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
341
    parser.add_argument("--use-beam-search", action="store_true")
Liangsheng Yin's avatar
Liangsheng Yin committed
342
343
344
345
346
347
348
349
350
351
352
353
    parser.add_argument(
        "--num-prompts", type=int, default=1000, help="Number of prompts to process."
    )
    parser.add_argument(
        "--request-rate",
        type=float,
        default=float("inf"),
        help="Number of requests per second. If this is inf, "
        "then all the requests are sent at time 0. "
        "Otherwise, we use Poisson process to synthesize "
        "the request arrival times.",
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
354
    parser.add_argument("--seed", type=int, default=0)
Liangsheng Yin's avatar
Liangsheng Yin committed
355
356
357
358
359
    parser.add_argument(
        "--trust-remote-code",
        action="store_true",
        help="trust remote code from huggingface",
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
360
361
    args = parser.parse_args()
    main(args)