test_deep_gemm.py 9.28 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
import random
import unittest
from typing import Any, Tuple

import deep_gemm
import torch
from deep_gemm import calc_diff, ceil_div, get_col_major_tma_aligned_tensor, jit

"""
fork deepgemm/tests/test_core.py
"""


def per_token_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    assert x.dim() == 2 and x.size(1) % 128 == 0
    m, n = x.shape
    x_view = x.view(m, -1, 128)
    x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4)
    return (x_view * (448.0 / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn).view(
        m, n
    ), (x_amax / 448.0).view(m, -1)


def per_block_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    assert x.dim() == 2
    m, n = x.shape
    x_padded = torch.zeros(
        (ceil_div(m, 128) * 128, ceil_div(n, 128) * 128), dtype=x.dtype, device=x.device
    )
    x_padded[:m, :n] = x
    x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128)
    x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4)
    x_scaled = (x_view * (448.0 / x_amax)).to(torch.float8_e4m3fn)
    return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (x_amax / 448.0).view(
        x_view.size(0), x_view.size(2)
    )


def construct(m: int, k: int, n: int) -> Tuple[
    Tuple[torch.Tensor, torch.Tensor],
    Tuple[torch.Tensor, torch.Tensor],
    torch.Tensor,
    torch.Tensor,
]:
    x = torch.randn((m, k), device="cuda", dtype=torch.bfloat16)
    y = torch.randn((n, k), device="cuda", dtype=torch.bfloat16)
    out = torch.empty((m, n), device="cuda", dtype=torch.bfloat16)
    ref_out = x @ y.t()

    x_fp8, y_fp8 = per_token_cast_to_fp8(x), per_block_cast_to_fp8(y)
    # Transpose earlier so that the testing will not trigger transposing kernels
    x_fp8 = (x_fp8[0], get_col_major_tma_aligned_tensor(x_fp8[1]))
    return x_fp8, y_fp8, out, ref_out


def construct_grouped(
    num_groups: int, m: int, k: int, n: int, is_masked: bool
) -> Tuple[
    Tuple[torch.Tensor, torch.Tensor],
    Tuple[torch.Tensor, torch.Tensor],
    torch.Tensor,
    torch.Tensor,
]:
    x = torch.randn((num_groups, m, k), device="cuda", dtype=torch.bfloat16)
    y = torch.randn((num_groups, n, k), device="cuda", dtype=torch.bfloat16)
    out = torch.empty((num_groups, m, n), device="cuda", dtype=torch.bfloat16)
    ref_out = torch.einsum("gmk,gnk->gmn", x, y)

    assert m % 4 == 0, f"TMA alignment error: {m}"
    x_fp8 = (
        torch.empty_like(x, dtype=torch.float8_e4m3fn),
        torch.empty((num_groups, m, k // 128), device="cuda", dtype=torch.float),
    )
    y_fp8 = (
        torch.empty_like(y, dtype=torch.float8_e4m3fn),
        torch.empty(
            (num_groups, (n + 127) // 128, k // 128), device="cuda", dtype=torch.float
        ),
    )
    for i in range(num_groups):
        x_fp8[0][i], x_fp8[1][i] = per_token_cast_to_fp8(x[i])
        y_fp8[0][i], y_fp8[1][i] = per_block_cast_to_fp8(y[i])

    # For non-masked input, we must merge the group and M dims
    if not is_masked:
        x_fp8 = (x_fp8[0].view(-1, k), per_token_cast_to_fp8(x.view(-1, k))[1])
        out, ref_out = out.view(-1, n), ref_out.view(-1, n)

    # Transpose earlier so that the testing will not trigger transposing kernels
    x_fp8 = (x_fp8[0], get_col_major_tma_aligned_tensor(x_fp8[1]))
    return x_fp8, y_fp8, out, ref_out


class TestDeepGemmCore(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True
        torch.manual_seed(0)
        random.seed(0)

        print("Library path:")
        print(f" > {deep_gemm.__path__}\n")

    def test_gemm(self):
        print("Testing GEMM:")
        for m in (64, 128, 4096):
            for k, n in [
                (7168, 2112),
                (1536, 24576),
                (512, 32768),
                (16384, 7168),
                (7168, 4096),
                (2048, 7168),
            ]:
                x_fp8, y_fp8, out, ref_out = construct(m, k, n)
                deep_gemm.gemm_fp8_fp8_bf16_nt(x_fp8, y_fp8, out)
                diff = calc_diff(out, ref_out)
                self.assertTrue(diff < 0.001, f"{m=}, {k=}, {n=}, {diff:.5f}")

    def test_m_grouped_gemm_contiguous(self):
        print("Testing grouped contiguous GEMM:")

        for num_groups, m, k, n in (
            (4, 8192, 7168, 4096),
            (4, 8192, 2048, 7168),
            (8, 4096, 7168, 4096),
            (8, 4096, 2048, 7168),
        ):
            # TODO: make a stronger test
            x_fp8, y_fp8, out, ref_out = construct_grouped(
                num_groups, m, k, n, is_masked=False
            )
            m_indices = torch.arange(0, num_groups, device="cuda", dtype=torch.int)
            m_indices = (
                m_indices.unsqueeze(-1).expand(num_groups, m).contiguous().view(-1)
            )
            deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_contiguous(
                x_fp8, y_fp8, out, m_indices
            )
            diff = calc_diff(out, ref_out)
            self.assertTrue(diff < 0.001, f"m={m * num_groups}, {k=}, {n=}, {diff:.5f}")

    def test_m_grouped_gemm_masked(self):
        print("Testing grouped masked GEMM:")

        for num_groups, m in ((1, 1024), (2, 512), (4, 256)):
            for k, n in (
                (7168, 4096),
                (2048, 7168),
            ):
                # Test correctness
                masked_m_candidates = list(
                    filter(
                        lambda candidate: candidate <= m, (64, 128, 192, 256, 320, 384)
                    )
                )
                for i in range(10):
                    x_fp8, y_fp8, out, ref_out = construct_grouped(
                        num_groups, m, k, n, is_masked=True
                    )
                    masked_m = torch.empty(
                        (num_groups,), device="cuda", dtype=torch.int
                    )
                    for j in range(num_groups):
                        masked_m[j] = random.choice(masked_m_candidates)
                    expected_m = min(int(masked_m.float().mean()) + 1, m)
                    deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_masked(
                        x_fp8, y_fp8, out, masked_m, expected_m
                    )
                    for j in range(num_groups):
                        diff = calc_diff(
                            out[j, : masked_m[j].item()],
                            ref_out[j, : masked_m[j].item()],
                        )
                        self.assertTrue(
                            diff < 0.001,
                            f"{m=}, {k=}, {n=}, {j=}, masked_m={masked_m[j]}, {num_groups=}, {diff:.5f}",
                        )


"""
fork deepgemm/tests/test_jit.py
"""


class Capture:
    def __init__(self) -> None:
        self.read_fd = None
        self.write_fd = None
        self.saved_stdout = None
        self.captured = None

    def __enter__(self) -> Any:
        self.read_fd, self.write_fd = os.pipe()
        self.saved_stdout = os.dup(1)
        os.dup2(self.write_fd, 1)
        return self

    def __exit__(self, exc_type, exc_val, exc_tb) -> None:
        os.dup2(self.saved_stdout, 1)
        os.close(self.write_fd)
        with os.fdopen(self.read_fd, "r") as f:
            self.captured = f.read()

    def capture(self) -> str:
        return self.captured


class TestDeepGemmJIT(unittest.TestCase):
    def test_jit(self):
        # Runtime
        print(f"NVCC compiler: {jit.get_nvcc_compiler()}\n")

        # Templates
        print("Generated code:")
        args = (
            ("lhs", torch.float8_e4m3fn),
            ("rhs", torch.float8_e4m3fn),
            ("scale", torch.float),
            ("out", torch.bfloat16),
            ("enable_double_streams", bool),
            ("stream", torch.cuda.Stream),
        )
        body = "\n"
        body += "std::cout << reinterpret_cast<uint64_t>(lhs) << std::endl;\n"
        body += "std::cout << reinterpret_cast<uint64_t>(rhs) << std::endl;\n"
        body += "std::cout << reinterpret_cast<uint64_t>(scale) << std::endl;\n"
        body += "std::cout << reinterpret_cast<uint64_t>(out) << std::endl;\n"
        body += "std::cout << enable_double_streams << std::endl;\n"
        body += "std::cout << reinterpret_cast<uint64_t>(stream) << std::endl;\n"
        code = jit.generate((), args, body)
        print(code)

        # Build
        print("Building ...")
        func = jit.build("test_func", args, code)

        # Test correctness
        print("Running ...")
        fp8_tensor = torch.empty((1,), dtype=torch.float8_e4m3fn, device="cuda")
        fp32_tensor = torch.empty((1,), dtype=torch.float, device="cuda")
        bf16_tensor = torch.empty((1,), dtype=torch.bfloat16, device="cuda")
        with Capture() as capture:
            self.assertTrue(
                func(
                    fp8_tensor,
                    fp8_tensor,
                    fp32_tensor,
                    bf16_tensor,
                    True,
                    torch.cuda.current_stream(),
                )
                == 0
            )
        output = capture.capture()
        ref_output = f"{fp8_tensor.data_ptr()}\n{fp8_tensor.data_ptr()}\n{fp32_tensor.data_ptr()}\n{bf16_tensor.data_ptr()}\n1\n{torch.cuda.current_stream().cuda_stream}\n"
        self.assertTrue(output == ref_output, f"{output=}, {ref_output=}")


if __name__ == "__main__":
    unittest.main()