test_lora.py 10.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

import multiprocessing as mp
import unittest

import torch

from sglang.test.runners import HFRunner, SRTRunner

LORA_SETS = [
    # {
    #     "base": "meta-llama/Llama-2-7b-hf",
    #     "loras": ["RuterNorway/Llama-2-7b-chat-norwegian-LoRa"],
    # },
    {"base": "meta-llama/Llama-2-7b-hf", "loras": ["winddude/wizardLM-LlaMA-LoRA-7B"]},
    # {"base": "mistralai/Mistral-7B-Instruct-v0.3", "loras": ["/home/ying/test_lora"]},
    # {
    #     "base": "mistralai/Mistral-7B-Instruct-v0.3",
    #     "loras": [
    #         "/home/ying/test_lora",
    #         "/home/ying/test_lora_1",
    #         "/home/ying/test_lora_2",
    #         "/home/ying/test_lora_3",
    #         "/home/ying/test_lora_4",
    #     ],
    # },
    # {"base": "meta-llama/Llama-2-7b-hf", "loras": ["yard1/llama-2-7b-sql-lora-test"]},
]
TORCH_DTYPES = [torch.float16]

PROMPTS = [
    """
### Instruction:
Write a poem about the transformers Python library. 
Mention the word "large language models" in that poem.
### Response:
The Transformers are large language models,
They're used to make predictions on text.
""",
    """
### Instruction:
Tell me about llamas and alpacas
### Response:
Llamas are large, long-necked animals with a woolly coat. They have two toes on each foot instead of three like other camelids (camels, dromedaries). Llamas live in the Andean mountains of South America where they graze on grasses and shrubs. Alpaca is another name for domesticated llama. The word "alpaca" comes from an Incan language meaning "golden fleece." Alpacas look very similar to llamas but are smaller than their wild relatives. Both species were used by ancient people as pack animals and for meat. Today both llamas and alpacas are raised primarily for their fiber which can be spun into yarn or knitted into clothing.
### Question 2:
What do you know about llamas?
### Answer:
""",
]

# import json
#
# with open("/home/ying/test_prompt/dialogue_choice_prompts.json", "r") as f:
#     samples = json.load(f)
# for sample in samples[:5]:
#     assert sample[0]["role"] == "user"
#     PROMPTS.append(sample[0]["content"][:2000])


class TestLoRA(unittest.TestCase):

    def inference(self, prompts, lora_set, tp_size, torch_dtype, max_new_tokens):
        print("=================== testing inference =======================")
        base_path = lora_set["base"]
        all_lora_paths = lora_set["loras"]
        batch_lora_paths = [None]
        i = 0
        for _ in range(len(prompts) - 1):
            batch_lora_paths.append(all_lora_paths[i])
            i = (i + 1) % len(all_lora_paths)

        with SRTRunner(
            base_path,
            torch_dtype=torch_dtype,
88
89
            model_type="generation",
            tp_size=tp_size,
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
            lora_paths=all_lora_paths,
            max_loras_per_batch=3,
            disable_cuda_graph=True,
            disable_radix_cache=True,
        ) as srt_runner:
            srt_outputs = srt_runner.forward(
                prompts, max_new_tokens=max_new_tokens, lora_paths=batch_lora_paths
            )

        with HFRunner(
            base_path,
            torch_dtype=torch_dtype,
            is_generation=True,
        ) as hf_runner:
            hf_outputs = hf_runner.forward(
                prompts, max_new_tokens=max_new_tokens, lora_paths=batch_lora_paths
            )

        with HFRunner(
            base_path,
            torch_dtype=torch_dtype,
            is_generation=True,
        ) as hf_runner:
            hf_no_lora_outputs = hf_runner.forward(
                prompts, max_new_tokens=max_new_tokens
            )

        with SRTRunner(
            base_path,
            tp_size=tp_size,
            torch_dtype=torch_dtype,
            is_generation=True,
        ) as srt_runner:
            srt_no_lora_outputs = srt_runner.forward(
                prompts, max_new_tokens=max_new_tokens
            )

        for i in range(len(prompts)):
            # compare input logprobs
            hf_logprobs = torch.Tensor(hf_outputs.top_input_logprobs[i])
            srt_logprobs = torch.Tensor(srt_outputs.top_input_logprobs[i])
            hf_no_lora_logprobs = torch.Tensor(hf_no_lora_outputs.top_input_logprobs[i])
            srt_no_lora_logprobs = torch.Tensor(
                srt_no_lora_outputs.top_input_logprobs[i]
            )
            print(
                "max input diff between hf_lora and srt_lora",
                torch.max(abs(hf_logprobs - srt_logprobs)),
            )
            print(
                "max input diff between srt_base and srt_lora",
                torch.max(abs(srt_no_lora_logprobs - srt_logprobs)),
            )
            print(
                "max input diff between srt_base and hf_base",
                torch.max(abs(srt_no_lora_logprobs - hf_no_lora_logprobs)),
            )
            print(
                "max input diff between hf_lora and hf_base",
                torch.max(abs(hf_logprobs - hf_no_lora_logprobs)),
            )

            # compare output logprobs
            hf_logprobs = torch.Tensor(hf_outputs.top_output_logprobs[i])
            srt_logprobs = torch.Tensor(srt_outputs.top_output_logprobs[i])
            # print(
            #     "\noutput logprobs diff",
            #     [
            #         float(torch.max(abs(hf_logprobs[j] - srt_logprobs[j])))
            #         for j in range(max_new_tokens)
            #     ],
            # )
            print(
                "max output diff between hf_lora and srt_lora",
                torch.max(abs(hf_logprobs - srt_logprobs)),
                "\n",
            )

        # compare output strings
        print(f"{hf_outputs.output_strs=}")
        print(f"{srt_outputs.output_strs=}")
        print(f"{hf_no_lora_outputs.output_strs=}")
        print(f"{srt_no_lora_outputs.output_strs=}")
        for i in range(len(prompts)):
            assert srt_outputs.output_strs[i].strip(" ") == hf_outputs.output_strs[i], (
                str_outputs.output_strs[i].strip(" "),
                hf_outputs.output_strs[i],
            )
            # assert (
            #     srt_no_lora_outputs.output_strs[i].strip(" ")
            #     == hf_no_lora_outputs.output_strs[i]
            # ), (
            #     srt_no_lora_outputs.output_strs[i].strip(" "),
            #     hf_no_lora_outputs.output_strs[i],
            # )

    def serving(self, prompts, lora_set, tp_size, torch_dtype, max_new_tokens):
        print("=================== testing serving =======================")
        # test batch forward
        base_path = lora_set["base"]
        all_lora_paths = lora_set["loras"]
        batch_lora_paths = [None]
        i = 0
        for _ in range(len(prompts) - 1):
            batch_lora_paths.append(all_lora_paths[i])
            i = (i + 1) % len(all_lora_paths)

        with SRTRunner(
            base_path,
            tp_size=tp_size,
            torch_dtype=torch_dtype,
            is_generation=True,
            lora_paths=all_lora_paths,
            max_loras_per_batch=3,
            disable_cuda_graph=True,
            disable_radix_cache=True,
        ) as srt_runner:
            srt_outputs = srt_runner.batch_forward(
                prompts, max_new_tokens=max_new_tokens, lora_paths=batch_lora_paths
            )

        with HFRunner(
            base_path,
            torch_dtype=torch_dtype,
            is_generation=True,
            output_str_only=True,
        ) as hf_runner:
            hf_outputs = hf_runner.forward(
                prompts, max_new_tokens=max_new_tokens, lora_paths=batch_lora_paths
            )

        # compare output strings
        print(f"{hf_outputs.output_strs=}")
        print(f"{srt_outputs.output_strs=}")
        for i in range(len(prompts)):
            assert srt_outputs.output_strs[i].strip(" ") == hf_outputs.output_strs[i], (
                srt_outputs.output_strs[i].strip(" "),
                hf_outputs.output_strs[i],
            )

    def base_inference(self, prompts, lora_set, tp_size, torch_dtype, max_new_tokens):
        print("=================== testing base inference =======================")
        base_path = lora_set["base"]
        all_lora_paths = lora_set["loras"]
        batch_lora_paths = [None] * len(prompts)

        with SRTRunner(
            base_path,
            tp_size=tp_size,
            torch_dtype=torch_dtype,
            is_generation=True,
        ) as srt_runner:
            srt_no_lora_outputs = srt_runner.forward(
                prompts, max_new_tokens=max_new_tokens
            )

        with SRTRunner(
            base_path,
            tp_size=tp_size,
            torch_dtype=torch_dtype,
            is_generation=True,
            lora_paths=all_lora_paths,
        ) as srt_runner:
            srt_outputs = srt_runner.forward(
                prompts, max_new_tokens=max_new_tokens, lora_paths=batch_lora_paths
            )

        for i in range(len(prompts)):
            srt_no_lora_logprobs = torch.Tensor(
                srt_no_lora_outputs.top_input_logprobs[i]
            )
            srt_logprobs = torch.uensor(srt_outputs.top_input_logprobs[i])
            print("max_diff", torch.max(abs(srt_no_lora_logprobs - srt_logprobs)))

        print(f"{srt_no_lora_outputs.output_strs=}")
        print(f"{srt_outputs.output_strs=}")

        for i in range(len(prompts)):
            assert srt_outputs.output_strs[i].strip(" ") == hf_outputs.output_strs[i], (
                str_outputs.output_strs[i].strip(" "),
                hf_outputs.output_strs[i],
            )
            assert (
                srt_no_lora_outputs[i].output_strs.strip(" ")
                == hf_no_lora_outputs[i].output_strs
            )

    def test_all(self):
        for lora_set in LORA_SETS:
            # self.load_lora_adapter(lora_set, 1)
            for torch_dtype in TORCH_DTYPES:
                tp_size = 1
                max_new_tokens = 32
                self.inference(PROMPTS, lora_set, tp_size, torch_dtype, max_new_tokens)
                # self.serving(PROMPTS, lora_set, tp_size, torch_dtype, max_new_tokens)
                # self.base_inference(
                #     PROMPTS, lora_set, tp_size, torch_dtype, max_new_tokens
                # )


if __name__ == "__main__":
    try:
        mp.set_start_method("spawn")
    except RuntimeError:
        pass

    unittest.main(warnings="ignore")