common_extension.cc 27.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
15
#include <ATen/core/dispatch/Dispatcher.h>
16
#include <torch/all.h>
17
18
#include <torch/library.h>

19
#include "sgl_kernel_ops.h"
20

21
TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) {
22
23
24
  /*
   * From csrc/allreduce
   */
25
26
27
  m.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta);
  m.def("register_graph_buffers", &register_graph_buffers);
  m.def("dispose", &dispose);
28
29
  m.def("meta_size", &meta_size);
  m.def("register_buffer", &register_buffer);
30
31

  m.def(
32
33
      "init_custom_ar(int[] ipc_tensors, Tensor rank_data, "
      "int rank, bool full_nvlink) -> int");
34
35
  m.impl("init_custom_ar", torch::kCUDA, &init_custom_ar);

36
37
38
  m.def(
      "all_reduce(int fa, Tensor inp, Tensor! out, int reg_buffer, "
      "int reg_buffer_sz_bytes) -> ()");
39
  m.impl("all_reduce", torch::kCUDA, &all_reduce);
40
41
42
43
44
45
46
47
48

  m.def("mscclpp_generate_unique_id", &mscclpp_generate_unique_id);
  m.def(
      "mscclpp_init_context(Tensor unique_id, int rank, int world_size, Tensor scratch, Tensor put_buffer, "
      "int nranks_per_node, int[] rank_to_node, int[] rank_to_ib, int context_selection) -> int");
  m.impl("mscclpp_init_context", torch::kCUDA, &mscclpp_init_context);

  m.def("mscclpp_allreduce(int context, Tensor inp, Tensor! out, int nthreads, int nblocks) -> ()");
  m.impl("mscclpp_allreduce", torch::kCUDA, &mscclpp_allreduce);
Lianmin Zheng's avatar
Lianmin Zheng committed
49

50
51
52
  /*
   * From csrc/attention
   */
53
54
55
56
  m.def(
      "lightning_attention_decode(Tensor q, Tensor k, Tensor v, Tensor past_kv, Tensor slope, Tensor! output, Tensor! "
      "new_kv) -> ()");
  m.impl("lightning_attention_decode", torch::kCUDA, &lightning_attention_decode);
Yineng Zhang's avatar
Yineng Zhang committed
57
58
  m.def("merge_state(Tensor v_a, Tensor s_a, Tensor v_b, Tensor s_b, Tensor! v_merged, Tensor! s_merged) -> ()");
  m.impl("merge_state", torch::kCUDA, &merge_state);
59
60
  m.def("merge_state_v2(Tensor v_a, Tensor s_a, Tensor v_b, Tensor s_b, Tensor! v_merged, Tensor! s_merged) -> ()");
  m.impl("merge_state_v2", torch::kCUDA, &merge_state_v2);
61
  m.def(
62
      "cutlass_mla_decode(Tensor! out, Tensor q_nope, Tensor q_pe, Tensor kv_c_and_k_pe_cache, Tensor seq_lens, Tensor "
63
      "page_table, Tensor! workspace, float sm_scale, int num_kv_splits) -> ()");
64
65
  m.impl("cutlass_mla_decode", torch::kCUDA, &cutlass_mla_decode);
  m.def("cutlass_mla_get_workspace_size", &cutlass_mla_get_workspace_size);
66

67
68
69
  /*
   * From csrc/elementwise
   */
70
  m.def("rmsnorm(Tensor! output, Tensor input, Tensor weight, float eps, bool enable_pdl) -> ()");
71
72
  m.impl("rmsnorm", torch::kCUDA, &rmsnorm);

73
  m.def("fused_add_rmsnorm(Tensor! input, Tensor! residual, Tensor weight, float eps, bool enable_pdl) -> ()");
74
75
  m.impl("fused_add_rmsnorm", torch::kCUDA, &sgl_fused_add_rmsnorm);

76
  m.def("gemma_rmsnorm(Tensor! output, Tensor input, Tensor weight, float eps, bool enable_pdl) -> ()");
77
78
  m.impl("gemma_rmsnorm", torch::kCUDA, &gemma_rmsnorm);

79
  m.def("gemma_fused_add_rmsnorm(Tensor! input, Tensor! residual, Tensor weight, float eps, bool enable_pdl) -> ()");
80
81
  m.impl("gemma_fused_add_rmsnorm", torch::kCUDA, &gemma_fused_add_rmsnorm);

82
  m.def("silu_and_mul(Tensor! out, Tensor input) -> ()");
83
84
  m.impl("silu_and_mul", torch::kCUDA, &silu_and_mul);

85
  m.def("gelu_tanh_and_mul(Tensor! out, Tensor input) -> ()");
86
87
  m.impl("gelu_tanh_and_mul", torch::kCUDA, &gelu_tanh_and_mul);

88
  m.def("gelu_and_mul(Tensor! out, Tensor input) -> ()");
89
90
91
92
  m.impl("gelu_and_mul", torch::kCUDA, &gelu_and_mul);

  m.def(
      "apply_rope_pos_ids_cos_sin_cache(Tensor q, Tensor k, Tensor! q_rope, Tensor! k_rope, Tensor cos_sin_cache, "
93
      "Tensor pos_ids, bool interleave, bool enable_pdl, int cuda_stream, "
94
      "Tensor? v, Tensor!? k_buffer, Tensor!? v_buffer, Tensor? kv_cache_loc) -> ()");
95
  m.impl("apply_rope_pos_ids_cos_sin_cache", torch::kCUDA, &apply_rope_pos_ids_cos_sin_cache);
96

97
98
99
100
101
  m.def(
      "downcast_fp8(Tensor k, Tensor v, Tensor k_out, Tensor v_out, Tensor k_scale, Tensor v_scale, Tensor loc, int "
      "mult, int offset, int cuda_stream) -> ()");
  m.impl("downcast_fp8", torch::kCUDA, &downcast_fp8);

102
103
104
105
106
  m.def("copy_to_gpu_no_ce(Tensor input, Tensor! output) -> ()");
  m.impl("copy_to_gpu_no_ce", torch::kCUDA, &copy_to_gpu_no_ce);
  m.def("concat_mla_k(Tensor! k, Tensor k_nope, Tensor k_rope) -> ()");
  m.impl("concat_mla_k", torch::kCUDA, &concat_mla_k);

107
108
109
  m.def("concat_mla_absorb_q(Tensor a, Tensor b, Tensor! out) -> ()");
  m.impl("concat_mla_absorb_q", torch::kCUDA, &concat_mla_absorb_q);

110
111
112
113
114
115
  m.def("fast_topk(Tensor score, Tensor indices, Tensor lengths) -> ()");
  m.impl("fast_topk", torch::kCUDA, &fast_topk_interface);
  m.def(
      "fast_topk_transform_fused(Tensor score, Tensor lengths, Tensor dst_page_table, Tensor src_page_table, Tensor "
      "cu_seqlens_q) -> ()");
  m.impl("fast_topk_transform_fused", torch::kCUDA, &fast_topk_transform_interface);
116
117
118
119
  m.def(
      "fast_topk_transform_ragged_fused(Tensor score, Tensor lengths, Tensor topk_indices_ragged, Tensor "
      "topk_indices_offset) -> ()");
  m.impl("fast_topk_transform_ragged_fused", torch::kCUDA, &fast_topk_transform_ragged_interface);
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
  /*
   * From gguf quantiztion
   */
  m.def(
      "ggml_dequantize(Tensor W, int type, SymInt m, SymInt n, ScalarType? "
      "dtype) -> Tensor");
  m.impl("ggml_dequantize", torch::kCUDA, &ggml_dequantize);

  m.def(
      "ggml_mul_mat_vec_a8(Tensor W, Tensor X, int type, SymInt row) "
      "-> Tensor");
  m.impl("ggml_mul_mat_vec_a8", torch::kCUDA, &ggml_mul_mat_vec_a8);

  m.def("ggml_mul_mat_a8(Tensor W, Tensor X, int type, SymInt row) -> Tensor");
  m.impl("ggml_mul_mat_a8", torch::kCUDA, &ggml_mul_mat_a8);

  m.def(
      "ggml_moe_a8(Tensor X, Tensor W, "
      "Tensor sorted_token_ids, Tensor expert_ids, Tensor "
      "num_tokens_post_padded, "
      "int type, SymInt row, SymInt top_k, SymInt tokens) -> Tensor");
  m.impl("ggml_moe_a8", torch::kCUDA, &ggml_moe_a8);

  m.def(
      "ggml_moe_a8_vec(Tensor X, Tensor W, "
      "Tensor topk_ids, int top_k, "
      "int type, SymInt row, SymInt tokens) -> Tensor");
  m.impl("ggml_moe_a8_vec", torch::kCUDA, &ggml_moe_a8_vec);

  m.def("ggml_moe_get_block_size", &ggml_moe_get_block_size);

152
153
154
  /*
   * From csrc/gemm
   */
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
  m.def("awq_dequantize(Tensor qweight, Tensor scales, Tensor qzeros) -> Tensor");
  m.impl("awq_dequantize", torch::kCUDA, &awq_dequantize);

  m.def(
      "int8_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype, Tensor? "
      "bias) -> Tensor");
  m.impl("int8_scaled_mm", torch::kCUDA, &int8_scaled_mm);

  m.def(
      "fp8_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype, Tensor? "
      "bias) -> Tensor");
  m.impl("fp8_scaled_mm", torch::kCUDA, &fp8_scaled_mm);

  m.def(
      "fp8_blockwise_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype) -> "
      "Tensor");
  m.impl("fp8_blockwise_scaled_mm", torch::kCUDA, &fp8_blockwise_scaled_mm);

  m.def(
174
      "sgl_per_token_group_quant_8bit(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
175
      " float eps, float fp8_min, float fp8_max, bool scale_ue8m0) -> ()");
176
  m.impl("sgl_per_token_group_quant_8bit", torch::kCUDA, &sgl_per_token_group_quant_8bit);
177
178

  m.def(
179
180
181
      "sgl_per_token_group_quant_8bit_v2(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
      " float eps, float fp8_min, float fp8_max, bool scale_ue8m0, bool fuse_silu_and_mul, Tensor? masked_m) -> ()");
  m.impl("sgl_per_token_group_quant_8bit_v2", torch::kCUDA, &sgl_per_token_group_quant_8bit_v2);
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

  m.def("sgl_per_tensor_quant_fp8(Tensor input, Tensor output_q, Tensor output_s, bool is_static) -> ()");
  m.impl("sgl_per_tensor_quant_fp8", torch::kCUDA, &sgl_per_tensor_quant_fp8);

  m.def("sgl_per_token_quant_fp8(Tensor input, Tensor output_q, Tensor output_s) -> ()");
  m.impl("sgl_per_token_quant_fp8", torch::kCUDA, &sgl_per_token_quant_fp8);

  m.def(
      "cutlass_scaled_fp4_mm(Tensor! out, Tensor a, Tensor b,"
      "                      Tensor block_scale_a, Tensor block_scale_b,"
      "                      Tensor alpha) -> ()");
  m.impl("cutlass_scaled_fp4_mm", torch::kCUDA, &cutlass_scaled_fp4_mm);

  m.def(
      "scaled_fp4_quant(Tensor! output, Tensor! input,"
      "                 Tensor! output_scale, Tensor! input_scale) -> ()");
  m.impl("scaled_fp4_quant", torch::kCUDA, &scaled_fp4_quant);
Trevor Morris's avatar
Trevor Morris committed
199

200
201
202
  m.def("dsv3_fused_a_gemm(Tensor! output, Tensor mat_a, Tensor mat_b) -> ()");
  m.impl("dsv3_fused_a_gemm", torch::kCUDA, &dsv3_fused_a_gemm);

203
204
205
206
207
208
209
  // Compute NVFP4 experts quantization.
  m.def(
      "scaled_fp4_experts_quant(Tensor! output, Tensor! output_scale,"
      "Tensor input, Tensor input_global_scale, Tensor input_offset_by_experts,"
      "Tensor output_scale_offset_by_experts) -> ()");
  m.impl("scaled_fp4_experts_quant", torch::kCUDA, &scaled_fp4_experts_quant);

210
211
  m.def(
      "silu_and_mul_scaled_fp4_experts_quant(Tensor! output, Tensor! output_scale,"
212
      "Tensor input, Tensor input_global_scale, Tensor mask, bool use_silu_and_mul) -> ()");
213
214
  m.impl("silu_and_mul_scaled_fp4_experts_quant", torch::kCUDA, &silu_and_mul_scaled_fp4_experts_quant);

215
216
217
218
219
220
221
  m.def(
      "cutlass_fp4_group_mm(Tensor! output, Tensor a, Tensor b,"
      "Tensor a_blockscale, Tensor b_blockscale, Tensor alphas,"
      "Tensor ab_strides, Tensor c_strides, Tensor problem_sizes,"
      " Tensor expert_offsets, Tensor sf_offsets) -> ()");
  m.impl("cutlass_fp4_group_mm", torch::kCUDA, &cutlass_fp4_group_mm);

222
223
224
  m.def("dsv3_router_gemm(Tensor! output, Tensor mat_a, Tensor mat_b) -> ()");
  m.impl("dsv3_router_gemm", torch::kCUDA, &dsv3_router_gemm);

225
226
227
  /*
   * From csrc/gemm/gptq
   */
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
  m.def(
      "gptq_marlin_gemm(Tensor! a, Tensor? c_or_none,"
      "Tensor! b_q_weight, Tensor! b_scales, Tensor? global_scale_or_none,"
      "Tensor? b_zeros_or_none, Tensor? g_idx_or_none, Tensor? perm_or_none,"
      "Tensor! workspace, int b_q_type_id, int size_m, int size_n, int size_k,"
      "bool is_k_full, bool use_atomic_add, bool use_fp32_reduce, bool is_zp_float) -> Tensor");
  m.impl("gptq_marlin_gemm", torch::kCUDA, &gptq_marlin_gemm);

  m.def(
      "gptq_gemm(Tensor a, Tensor b_q_weight, Tensor b_gptq_qzeros, Tensor b_gptq_scales, Tensor b_g_idx, bool "
      "use_shuffle, int bit) -> Tensor");
  m.impl("gptq_gemm", torch::kCUDA, &gptq_gemm);

  m.def("gptq_shuffle(Tensor! q_weight, Tensor q_perm, int bit) -> ()");
  m.impl("gptq_shuffle", torch::kCUDA, &gptq_shuffle);

  m.def("gptq_marlin_repack(Tensor! b_q_weight, Tensor! perm, int size_k, int size_n, int num_bits) -> Tensor");
  m.impl("gptq_marlin_repack", torch::kCUDA, &gptq_marlin_repack);

  m.def("awq_marlin_repack(Tensor! b_q_weight, int size_k, int size_n, int num_bits) -> Tensor");
  m.impl("awq_marlin_repack", torch::kCUDA, &awq_marlin_repack);
249

250
251
252
  /*
   * From csrc/moe
   */
253
254
  m.def(
      "moe_align_block_size(Tensor topk_ids, int num_experts, int block_size, Tensor! sorted_token_ids, Tensor! "
255
      "experts_ids, Tensor! num_tokens_post_pad, Tensor! cumsum_buffer, bool "
256
      "pad_sorted_token_ids) -> ()");
257
258
  m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);

259
  m.def("topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor gating_output, bool renormalize) -> ()");
260
  m.impl("topk_softmax", torch::kCUDA, &topk_softmax);
261

262
263
  m.def("moe_sum_reduce(Tensor input, Tensor output, float routed_scaling_factor) -> ()");
  m.impl("moe_sum_reduce", torch::kCUDA, &moe_sum_reduce);
264
265
266
267

  m.def("moe_sum(Tensor input, Tensor! output) -> ()");
  m.impl("moe_sum", torch::kCUDA, &moe_sum);

268
  m.def(
269
      "moe_fused_gate(Tensor input, Tensor bias, int num_expert_group, int topk_group, int topk, int "
270
      "num_fused_shared_experts, float routed_scaling_factor, bool apply_routed_scaling_factor_on_output) -> "
271
272
      "(Tensor[])");
  m.impl("moe_fused_gate", torch::kCUDA, &moe_fused_gate);
273

274
  m.def(
275
276
      "fp8_blockwise_scaled_grouped_mm(Tensor output, Tensor a_ptrs, Tensor b_ptrs, Tensor out_ptrs, Tensor "
      "a_scales_ptrs, Tensor b_scales_ptrs, Tensor a, Tensor b, Tensor scales_a, Tensor scales_b, Tensor "
277
      "stride_a, Tensor stride_b, Tensor stride_c, Tensor layout_sfa, Tensor layout_sfb, Tensor problem_sizes, Tensor "
278
      "expert_offsets, Tensor workspace) -> ()");
279
  m.impl("fp8_blockwise_scaled_grouped_mm", torch::kCUDA, &fp8_blockwise_scaled_grouped_mm);
280

281
  m.def(
282
283
284
      "prepare_moe_input(Tensor topk_ids, Tensor expert_offsets, Tensor? blockscale_offsets, Tensor problem_sizes1,"
      " Tensor problem_sizes2, Tensor input_permutation, Tensor output_permutation, int num_experts, int n, int k) -> "
      "()");
285
  m.impl("prepare_moe_input", torch::kCUDA, &prepare_moe_input);
286
287
288

  m.def("shuffle_rows(Tensor input, Tensor dst2src_map, Tensor output) -> ()");
  m.impl("shuffle_rows", torch::kCUDA, &shuffle_rows);
289
290
  m.def("apply_shuffle_mul_sum(Tensor input, Tensor output, Tensor permutation, Tensor? factors) -> ()");
  m.impl("apply_shuffle_mul_sum", torch::kCUDA, &apply_shuffle_mul_sum);
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
  /*
   * From csrc/moe/marlin_moe_wna16
   */
  m.def(
      "moe_wna16_marlin_gemm(Tensor! a, Tensor? c_or_none,"
      "Tensor! b_q_weight, Tensor! b_scales, Tensor? b_zeros_or_none,"
      "Tensor? g_idx_or_none, Tensor? perm_or_none, Tensor! workspace,"
      "Tensor sorted_token_ids,"
      "Tensor! expert_ids, Tensor! num_tokens_past_padded,"
      "Tensor! topk_weights, int moe_block_size, int top_k, "
      "bool mul_topk_weights, bool is_ep, int b_q_type_id,"
      "int size_m, int size_n, int size_k,"
      "bool is_k_full, bool use_atomic_add,"
      "bool use_fp32_reduce, bool is_zp_float) -> Tensor");
  m.impl("moe_wna16_marlin_gemm", torch::kCUDA, &moe_wna16_marlin_gemm);

  /*
   * From csrc/moe/cutlass_moe/w4a8
   */
  m.def(
      "get_cutlass_w4a8_moe_mm_data(Tensor topk_ids, Tensor! expert_offsets, "
      "                        Tensor! problem_sizes1, Tensor! problem_sizes2, "
      "                        Tensor! input_permutation, "
      "                        Tensor! output_permutation, int num_experts, "
      "                        int n, int k) -> ()");
  m.impl("get_cutlass_w4a8_moe_mm_data", torch::kCUDA, &get_cutlass_w4a8_moe_mm_data);

  m.def(
      "cutlass_w4a8_moe_mm(Tensor! d, Tensor a, Tensor b, "
      "               Tensor a_scales, Tensor b_scales, Tensor expert_offsets, "
      "               Tensor problem_sizes, Tensor a_strides, "
      "               Tensor b_strides, Tensor d_strides, Tensor s_strides,"
      "               int chunk_size, int topk) -> ()");
  m.impl("cutlass_w4a8_moe_mm", torch::kCUDA, &cutlass_w4a8_moe_mm);

327
328
329
  /*
   * From csrc/speculative
   */
330
331
332
  m.def(
      "tree_speculative_sampling_target_only(Tensor! predicts, Tensor! accept_index, Tensor! accept_token_num, "
      "Tensor candidates, Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
333
      "Tensor uniform_samples, Tensor uniform_samples_for_final_sampling, Tensor target_probs, Tensor draft_probs, "
334
335
336
337
338
339
340
341
342
343
      "float threshold_single, float threshold_acc, "
      "bool deterministic, int cuda_stream) -> ()");
  m.impl("tree_speculative_sampling_target_only", torch::kCUDA, &tree_speculative_sampling_target_only);

  m.def(
      "verify_tree_greedy(Tensor! predicts, Tensor! accept_index, Tensor! accept_token_num, "
      "Tensor candidates, Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
      "Tensor target_predict, int cuda_stream) -> ()");
  m.impl("verify_tree_greedy", torch::kCUDA, &verify_tree_greedy);

344
345
346
347
348
349
  m.def(
      "reconstruct_indices_from_tree_mask(Tensor tree_mask, Tensor verified_seq_len, Tensor positions, "
      "Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
      "int batch_size, int draft_token_num) -> ()");
  m.impl("reconstruct_indices_from_tree_mask", torch::kCUDA, &reconstruct_indices_from_tree_mask);

350
351
352
  m.def(
      "build_tree_kernel_efficient(Tensor parent_list, Tensor selected_index, Tensor verified_seq_len, "
      "Tensor! tree_mask, Tensor! positions, Tensor! retrive_index, Tensor! retrive_next_token, "
353
354
      "Tensor! retrive_next_sibling, int topk, int depth, int draft_token_num, int tree_mask_mode) -> "
      "()");
355
356
  m.impl("build_tree_kernel_efficient", torch::kCUDA, &build_tree_kernel_efficient);

357
358
359
  m.def(
      "segment_packbits(Tensor x, Tensor input_indptr, Tensor output_indptr, Tensor! y, int batch_size, "
      "int cuda_stream) -> ()");
360
  m.impl("segment_packbits", torch::kCUDA, &segment_packbits);
361

362
363
364
365
366
367
368
369
  /*
   * From csrc/kvcacheio
   */
  m.def(
      "transfer_kv_per_layer(Tensor src_k, Tensor dst_k, Tensor src_v, Tensor dst_v, Tensor src_indices, Tensor "
      "dst_indices, int item_size, int block_quota, int num_warps_per_block) -> ()");
  m.impl("transfer_kv_per_layer", torch::kCUDA, &transfer_kv_per_layer);
  m.def(
370
      "transfer_kv_per_layer_pf_lf(Tensor src_k, Tensor dst_k, Tensor src_v, Tensor dst_v, Tensor src_indices, Tensor "
371
      "dst_indices, int layer_id, int item_size, int src_layout_dim, int block_quota, int num_warps_per_block) -> ()");
372
  m.impl("transfer_kv_per_layer_pf_lf", torch::kCUDA, &transfer_kv_per_layer_pf_lf);
373
374
375
376
377
  m.def(
      "transfer_kv_per_layer_ph_lf(Tensor src_k, Tensor dst_k, Tensor src_v, Tensor dst_v, Tensor src_indices, Tensor "
      "dst_indices, int layer_id, int item_size, int src_layout_dim, int page_size, int head_num, int block_quota, int "
      "num_warps_per_block) -> ()");
  m.impl("transfer_kv_per_layer_ph_lf", torch::kCUDA, &transfer_kv_per_layer_ph_lf);
378
  m.def(
379
380
      "transfer_kv_all_layer(Tensor src_k_layers, Tensor dst_k_layers, Tensor src_v_layers, Tensor dst_v_layers, "
      "Tensor src_indices, Tensor dst_indices, int item_size, int num_layers, int block_quota, int "
381
382
383
      "num_warps_per_block) -> ()");
  m.impl("transfer_kv_all_layer", torch::kCUDA, &transfer_kv_all_layer);
  m.def(
384
385
386
387
      "transfer_kv_all_layer_lf_pf(Tensor src_k_layers, Tensor dst_k, Tensor src_v_layers, Tensor dst_v, "
      "Tensor src_indices, Tensor dst_indices, int item_size, int dst_layout_dim, int num_layers, int block_quota, int "
      "num_warps_per_block) -> ()");
  m.impl("transfer_kv_all_layer_lf_pf", torch::kCUDA, &transfer_kv_all_layer_lf_pf);
388
389
390
391
392
  m.def(
      "transfer_kv_all_layer_lf_ph(Tensor src_k_layers, Tensor dst_k, Tensor src_v_layers, Tensor dst_v, "
      "Tensor src_indices, Tensor dst_indices, int item_size, int dst_layout_dim, int num_layers, int page_size, int "
      "head_num, int block_quota, int num_warps_per_block) -> ()");
  m.impl("transfer_kv_all_layer_lf_ph", torch::kCUDA, &transfer_kv_all_layer_lf_ph);
393
394
395
396
397
  m.def(
      "transfer_kv_per_layer_mla(Tensor src, Tensor dst, Tensor src_indices, Tensor dst_indices, int item_size, int "
      "block_quota, int num_warps_per_block) -> ()");
  m.impl("transfer_kv_per_layer_mla", torch::kCUDA, &transfer_kv_per_layer_mla);
  m.def(
398
399
      "transfer_kv_per_layer_mla_pf_lf(Tensor src, Tensor dst, Tensor src_indices, Tensor dst_indices, int layer_id, "
      "int item_size, int src_layout_dim, int block_quota, int num_warps_per_block) -> ()");
400
  m.impl("transfer_kv_per_layer_mla_pf_lf", torch::kCUDA, &transfer_kv_per_layer_mla_pf_lf);
401
  m.def(
402
403
      "transfer_kv_all_layer_mla(Tensor src_layers, Tensor dst_layers, Tensor src_indices, Tensor dst_indices, int "
      "item_size, int num_layers, int block_quota, int num_warps_per_block) -> ()");
404
405
  m.impl("transfer_kv_all_layer_mla", torch::kCUDA, &transfer_kv_all_layer_mla);
  m.def(
406
407
408
409
410
411
412
      "transfer_kv_all_layer_mla_lf_pf(Tensor src_layers, Tensor dst, Tensor src_indices, Tensor dst_indices, "
      "int item_size, int dst_layout_dim, int num_layers, int block_quota, int num_warps_per_block) -> ()");
  m.impl("transfer_kv_all_layer_mla_lf_pf", torch::kCUDA, &transfer_kv_all_layer_mla_lf_pf);
  m.def(
      "transfer_kv_direct(Tensor[] src_layers, Tensor[] dst_layers, Tensor src_indices, Tensor dst_indices, int "
      "page_size) -> ()");
  m.impl("transfer_kv_direct", torch::kCUDA, &transfer_kv_direct);
413
414
415
416
417
418
419
420
  m.def(
      "transfer_kv_per_layer_direct_pf_lf(Tensor[] src_ptrs, Tensor[] dst_ptrs, Tensor src_indices, "
      "Tensor dst_indices, int layer_id, int page_size)->() ");
  m.impl("transfer_kv_per_layer_direct_pf_lf", torch::kCUDA, &transfer_kv_per_layer_direct_pf_lf);
  m.def(
      "transfer_kv_all_layer_direct_lf_pf(Tensor[] src_ptrs, Tensor[] dst_ptrs, Tensor src_indices, "
      "Tensor dst_indices, int page_size) ->() ");
  m.impl("transfer_kv_all_layer_direct_lf_pf", torch::kCUDA, &transfer_kv_all_layer_direct_lf_pf);
421

Lianmin Zheng's avatar
Lianmin Zheng committed
422
423
424
425
426
427
  /*
   * From csrc/memory
   */
  m.def("store_kv_cache(Tensor k_cache, Tensor v_cache, Tensor out_loc, Tensor k, Tensor v) -> ()");
  m.impl("store_kv_cache", &store_kv_cache);

428
429
430
  /*
   * From FlashInfer
   */
Yineng Zhang's avatar
Yineng Zhang committed
431
432
  m.def(
      "bmm_fp8(Tensor A, Tensor B, Tensor! D, Tensor A_scale, Tensor B_scale, Tensor workspace_buffer, int "
433
434
      "cublas_handle, int cuda_stream) -> ()",
      {at::Tag::needs_fixed_stride_order});
Yineng Zhang's avatar
Yineng Zhang committed
435
  m.impl("bmm_fp8", torch::kCUDA, &bmm_fp8);
436
437

  m.def(
438
439
      "min_p_sampling_from_probs(Tensor probs, Tensor output, Tensor? maybe_indices, Tensor? maybe_min_p_arr, float "
      "min_p_val, bool deterministic, Generator? gen) -> ()");
440
441
  m.impl("min_p_sampling_from_probs", torch::kCUDA, &min_p_sampling_from_probs);

442
  m.def("top_k_renorm_probs(Tensor probs, Tensor! renorm_probs, Tensor? maybe_top_k_arr, int top_k_val) -> ()");
443
444
  m.impl("top_k_renorm_probs", torch::kCUDA, &top_k_renorm_probs);

445
  m.def("top_p_renorm_probs(Tensor probs, Tensor! renorm_probs, Tensor? maybe_top_p_arr, float top_p_val) -> ()");
446
447
  m.impl("top_p_renorm_probs", torch::kCUDA, &top_p_renorm_probs);

448
449
450
451
452
  m.def(
      "top_p_sampling_from_probs(Tensor probs, Tensor output, Tensor? maybe_indices, Tensor? "
      "maybe_top_p_arr, float top_p_val, bool deterministic, Generator? gen) -> ()");
  m.impl("top_p_sampling_from_probs", torch::kCUDA, &top_p_sampling_from_probs);

453
  m.def(
454
455
      "top_k_top_p_sampling_from_probs(Tensor probs, Tensor output, Tensor? maybe_indices, Tensor? maybe_top_k_arr, "
      "float top_k_val, Tensor? maybe_top_p_arr, float top_p_val, bool deterministic, Generator? gen) -> ()");
456
457
  m.impl("top_k_top_p_sampling_from_probs", torch::kCUDA, &top_k_top_p_sampling_from_probs);

458
459
460
  m.def("top_k_mask_logits(Tensor logits, Tensor mask_logits, Tensor? maybe_top_k_arr, int top_k_val) -> ()");
  m.impl("top_k_mask_logits", torch::kCUDA, &top_k_mask_logits);

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
  /*
   * From Sparse Flash Attention
   */
  m.def(
      "fwd_sparse(Tensor! q, Tensor k, Tensor v, "
      "Tensor block_count, Tensor block_offset, Tensor column_count, Tensor column_index, "
      "Tensor!? out, Tensor? alibi_slopes, "
      "float p_dropout, float softmax_scale, bool is_causal, "
      "float softcap, bool return_softmax, Generator? gen)"
      "-> Tensor[]");
  m.impl("fwd_sparse", torch::kCUDA, &flash::mha_fwd_sparse);

  m.def(
      "varlen_fwd_sparse(Tensor! q, Tensor k, Tensor v, "
      "Tensor block_count, Tensor block_offset, Tensor column_count, Tensor column_index, "
      "Tensor!? out, Tensor cu_seqlens_q, "
      "Tensor cu_seqlens_k, Tensor? seqused_k, Tensor? alibi_slopes, "
      "int max_seqlen_q, int max_seqlen_k, float p_dropout, float softmax_scale, bool zero_tensors, "
      "bool is_causal, float softcap, bool return_softmax, "
      "Generator? gen) -> Tensor[]");
  m.impl("varlen_fwd_sparse", torch::kCUDA, &flash::mha_varlen_fwd_sparse);
482

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
  // Sparse Attention utils
  m.def(
      "convert_vertical_slash_indexes("
      "   Tensor! block_count, Tensor! block_offset, "
      "   Tensor! column_count, Tensor! column_index, "
      "   Tensor q_seqlens, Tensor q_seqlens, "
      "   Tensor vertical_indexes, Tensor slash_indexes, "
      "   int context_size, int block_size_M, int block_size_N, "
      "   bool causal) -> ()");
  m.impl("convert_vertical_slash_indexes", torch::kCUDA, &convert_vertical_slash_indexes);

  m.def(
      "convert_vertical_slash_indexes_mergehead("
      "   Tensor! block_count, Tensor! block_offset, "
      "   Tensor! column_count, Tensor! column_index, "
      "   Tensor q_seqlens, Tensor q_seqlens, "
      "   Tensor vertical_indexes, Tensor slash_indexes, "
      "   Tensor vertical_indices_count, Tensor slash_indices_count, "
      "   int context_size, int block_size_M, int block_size_N, "
      "   bool causal) -> ()");
  m.impl("convert_vertical_slash_indexes_mergehead", torch::kCUDA, &convert_vertical_slash_indexes_mergehead);

505
  /*
Lianmin Zheng's avatar
Lianmin Zheng committed
506
   * From csrc/grammar
507
508
509
   */
  m.def("apply_token_bitmask_inplace_cuda(Tensor logits, Tensor bitmask, Tensor? indices=None) -> ()");
  m.impl("apply_token_bitmask_inplace_cuda", &ApplyTokenBitmaskInplace);
HandH1998's avatar
HandH1998 committed
510
511

  /*
Lianmin Zheng's avatar
Lianmin Zheng committed
512
   * From csrc/gemm (QServe)
HandH1998's avatar
HandH1998 committed
513
514
515
516
517
518
519
520
521
522
   */
  m.def(
      "qserve_w4a8_per_chn_gemm(Tensor _in_feats, Tensor _kernel, Tensor _wscales, Tensor _ascales, Tensor _w_szs, "
      "Tensor _a_ssums, Tensor! _out_feats) -> ()");
  m.impl("qserve_w4a8_per_chn_gemm", torch::kCUDA, &qserve_w4a8_per_chn_gemm);

  m.def(
      "qserve_w4a8_per_group_gemm(Tensor _in_feats, Tensor _kernel, Tensor _zeros, Tensor _scales_i8, Tensor _wscales, "
      "Tensor _ascales, Tensor! _out_feats) -> ()");
  m.impl("qserve_w4a8_per_group_gemm", torch::kCUDA, &qserve_w4a8_per_group_gemm);
523

Yi Zhang's avatar
Yi Zhang committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
  /*
   * From csrc/mamba
   */
  m.def(
      "causal_conv1d_update(Tensor! x,"
      "Tensor! conv_state,"
      "Tensor! weight,"
      "Tensor? bias_,"
      "bool silu_activation,"
      "Tensor? cache_seqlens_,"
      "Tensor? conv_state_indices,"
      "int pad_slot_id) -> ()");
  m.impl("causal_conv1d_update", torch::kCUDA, &causal_conv1d_update);

  m.def(
      "causal_conv1d_fwd(Tensor! x, Tensor! weight,"
      "Tensor? bias_,"
      "Tensor!? conv_states,"
      "Tensor? query_start_loc,"
      "Tensor? cache_indices,"
      "Tensor? has_initial_state,"
      "bool silu_activation,"
      "int pad_slot_id) -> ()");
  m.impl("causal_conv1d_fwd", torch::kCUDA, &causal_conv1d_fwd);
548
549
550
551
552
553

  /*
   * From csrc/expert_sepcialization
   */
  m.def(
      "es_fp8_blockwise_scaled_grouped_mm(Tensor output, Tensor a, Tensor b, Tensor scales_a, Tensor scales_b, Tensor "
554
555
      "stride_a, Tensor stride_b, Tensor stride_d, Tensor problem_sizes, Tensor expert_offsets, Tensor workspace) -> "
      "()");
556
  m.impl("es_fp8_blockwise_scaled_grouped_mm", &es_fp8_blockwise_scaled_grouped_mm);
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

  /*
   * From hadamard-transform
   */
  m.def("fast_hadamard_transform(Tensor x, float scale) -> Tensor");
  m.impl("fast_hadamard_transform", torch::kCUDA, &fast_hadamard_transform);

  m.def("fast_hadamard_transform_12N(Tensor x, float scale) -> Tensor");
  m.impl("fast_hadamard_transform_12N", torch::kCUDA, &fast_hadamard_transform_12N);

  m.def("fast_hadamard_transform_20N(Tensor x, float scale) -> Tensor");
  m.impl("fast_hadamard_transform_20N", torch::kCUDA, &fast_hadamard_transform_20N);

  m.def("fast_hadamard_transform_28N(Tensor x, float scale) -> Tensor");
  m.impl("fast_hadamard_transform_28N", torch::kCUDA, &fast_hadamard_transform_28N);

  m.def("fast_hadamard_transform_40N(Tensor x, float scale) -> Tensor");
  m.impl("fast_hadamard_transform_40N", torch::kCUDA, &fast_hadamard_transform_40N);
575
576
}

577
REGISTER_EXTENSION(common_ops)