moe_fp8.cpp 16.9 KB
Newer Older
1
2
3
4
5
6
#include "common.h"
#include "gemm.h"
#include "vec.h"

namespace {

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
template <typename scalar_t>
inline void copy_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, int64_t size) {
  using Vec = at::vec::Vectorized<scalar_t>;
// no remainder
#pragma GCC unroll 4
  for (int64_t d = 0; d < size; d += Vec::size()) {
    Vec data = Vec::loadu(input + d);
    data.store(out + d);
  }
}

template <typename scalar_t>
inline void copy_mul_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, float weight, int64_t size) {
  using bVec = at::vec::Vectorized<scalar_t>;
  using fVec = at::vec::Vectorized<float>;
  constexpr int kVecSize = bVec::size();
  const fVec weight_vec = fVec(weight);
  int64_t d;
#pragma GCC unroll 4
  for (d = 0; d <= size - kVecSize; d += kVecSize) {
    bVec x = bVec::loadu(input + d);
    fVec x0, x1;
    std::tie(x0, x1) = at::vec::convert_to_float(x);
    x0 = x0 * weight_vec;
    x1 = x1 * weight_vec;
    bVec out_vec = convert_from_float_ext<scalar_t>(x0, x1);
    out_vec.store(out + d);
  }
  for (; d < size; ++d) {
    out[d] = static_cast<scalar_t>(input[d] * weight);
  }
}

// acc from [topk, K] to [K]
template <typename scalar_t>
inline void sum_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, int64_t topk, int64_t K) {
  using bVec = at::vec::Vectorized<scalar_t>;
  using fVec = at::vec::Vectorized<float>;
  constexpr int kVecSize = bVec::size();
  if (topk == 1) {
    // do copy for topk = 1
    copy_stub(out, input, K);
  } else {
    // do sum for topk != 1
    int64_t d;
#pragma GCC unroll 4
    for (d = 0; d <= K - kVecSize; d += kVecSize) {
      fVec sum_fvec0 = fVec(0.f);
      fVec sum_fvec1 = fVec(0.f);
      for (int t = 0; t < topk; ++t) {
        bVec x_bvec = bVec::loadu(input + t * K + d);
        fVec x_fvec0, x_fvec1;
        std::tie(x_fvec0, x_fvec1) = at::vec::convert_to_float(x_bvec);

        sum_fvec0 += x_fvec0;
        sum_fvec1 += x_fvec1;
      }
      bVec out_bvec = convert_from_float_ext<scalar_t>(sum_fvec0, sum_fvec1);
      out_bvec.store(out + d);
    }
    for (; d < K; ++d) {
      float sum_val = 0.f;
      for (int t = 0; t < topk; ++t) {
        sum_val += static_cast<float>(input[t * K + d]);
      }
      out[d] = static_cast<scalar_t>(sum_val);
    }
  }
}

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
// out = input + input2 * scale
template <typename scalar_t>
inline void add_mul_stub(
    scalar_t* __restrict__ out,
    const scalar_t* __restrict__ input,
    const scalar_t* __restrict__ input2,
    float scale,
    int64_t size) {
  using bVec = at::vec::Vectorized<scalar_t>;
  using fVec = at::vec::Vectorized<float>;
  constexpr int kVecSize = bVec::size();
  const fVec s_vec = fVec(scale);

  int64_t d;
#pragma GCC unroll 4
  for (d = 0; d <= size - kVecSize; d += kVecSize) {
    bVec x_bvec = bVec::loadu(input + d);
    fVec x0, x1;
    std::tie(x0, x1) = at::vec::convert_to_float(x_bvec);

    bVec y_bvec = bVec::loadu(input2 + d);
    fVec y0, y1;
    std::tie(y0, y1) = at::vec::convert_to_float(y_bvec);

    x0 = x0 + y0 * s_vec;
    x1 = x1 + y1 * s_vec;
    bVec out_vec = convert_from_float_ext<scalar_t>(x0, x1);
    out_vec.store(out + d);
  }
  for (; d < size; ++d) {
    out[d] = static_cast<scalar_t>(input[d] + float(input2[d]) * scale);
  }
}

template <typename scalar_t>
inline void silu_and_mul_stub(
    scalar_t* __restrict__ out, const scalar_t* __restrict__ input, const scalar_t* __restrict__ input2, int64_t size) {
  using bVec = at::vec::Vectorized<scalar_t>;
  using fVec = at::vec::Vectorized<float>;
  const fVec one = fVec(1.f);

  // no remainder
#pragma GCC unroll 4
  for (int64_t d = 0; d < size; d += bVec::size()) {
    bVec x = bVec::loadu(input + d);
    fVec x0, x1;
    std::tie(x0, x1) = at::vec::convert_to_float(x);
    bVec y = bVec::loadu(input2 + d);
    fVec y0, y1;
    std::tie(y0, y1) = at::vec::convert_to_float(y);
    x0 = x0 / (one + x0.neg().exp_u20());
    x1 = x1 / (one + x1.neg().exp_u20());
    x0 = x0 * y0;
    x1 = x1 * y1;
    bVec out_vec = convert_from_float_ext<scalar_t>(x0, x1);
    out_vec.store(out + d);
  }
}

}  // anonymous namespace

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
template <typename scalar_t>
void fused_experts_fp8_kernel_impl(
    scalar_t* __restrict__ output,
    scalar_t* __restrict__ ic0,
    scalar_t* __restrict__ ic1,
    scalar_t* __restrict__ ic2,
    scalar_t* __restrict__ A_tmp,
    const scalar_t* __restrict__ input,
    const at::Float8_e4m3fn* __restrict__ packed_w1,
    const at::Float8_e4m3fn* __restrict__ packed_w2,
    const float* __restrict__ w1s,
    const float* __restrict__ w2s,
    int64_t block_size_N,
    int64_t block_size_K,
    const float* __restrict__ topk_weights,
    const int32_t* __restrict__ sorted_ids,
    const int32_t* __restrict__ expert_ids,
    const int32_t* __restrict__ offsets,
    int64_t M,
    int64_t N,
    int64_t K,
    int64_t E,
    int64_t topk,
    int64_t num_tokens_post_pad) {
  constexpr int64_t BLOCK_M = block_size_m();
  constexpr int64_t BLOCK_N = block_size_n();

  // stage 1: intermediate_cache0 = hidden_states @ w1
  const int64_t MB = div_up(num_tokens_post_pad, BLOCK_M);
  const int64_t NB = div_up(2 * N, BLOCK_N);
  int64_t scale_size_N = div_up(2 * N, block_size_N);
  int64_t scale_size_K = div_up(K, block_size_K);
  int64_t blocks_n_per_group = block_size_N / BLOCK_N;

  const int64_t stride_e = 2 * N * K;
  const int64_t stride_n = K;

  // here we only parallel on half of 2N to fuse silu_and_mul with gemm
  at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
    // get local pointers
    int tid = at::get_thread_num();
    scalar_t* __restrict__ A = A_tmp + tid * BLOCK_M * K;

    alignas(64) scalar_t Btmp[BLOCK_N * BLOCK_K];
    alignas(64) float Ctmp[BLOCK_M * BLOCK_N];

    bool is_brgemm_used = false;

    for (int64_t i = begin; i < end; ++i) {
      int64_t mb = i / NB;
      int64_t nb = i % NB;

      int64_t n_size = std::min(2 * N - nb * BLOCK_N, BLOCK_N);

      // B shape [K, n_size] in vnni format
      int32_t expert_id = expert_ids[mb];
      const at::Float8_e4m3fn* __restrict__ B = packed_w1 + expert_id * stride_e + nb * BLOCK_N * stride_n;
      const float* __restrict__ Bs =
          w1s + expert_id * scale_size_N * scale_size_K + (nb / blocks_n_per_group) * scale_size_K;

      // 1.a load A
      const int32_t* A_ids = sorted_ids + mb * BLOCK_M;
      int64_t m_size = offsets[mb + 1] - offsets[mb];

      const bool use_brgemm = can_use_brgemm<at::Float8_e4m3fn>(m_size);
      is_brgemm_used = is_brgemm_used || use_brgemm;

      for (int64_t m = 0; m < m_size; ++m) {
        int32_t index = A_ids[m] / topk;
        copy_stub(A + m * K, input + index * K, K);
      }

      const int64_t offset = offsets[mb];
      tinygemm_kernel<scalar_t>(
          /*   A            */ A,
          /*   B            */ B,
          /*   C            */ ic0 + offset * 2 * N + nb * BLOCK_N,
          /*   Btmp         */ Btmp,
          /*   Ctmp         */ Ctmp,
          /*   scale        */ Bs,
          /*   M            */ m_size,
          /*   N            */ n_size,
          /*   K            */ K,
          /*   lda          */ K,
          /*   ldb          */ n_size,
          /*   ldc          */ 2 * N,
          /*   brg          */ use_brgemm,
          /*   block_size_K */ block_size_K);
    }

    if (is_brgemm_used) {
      at::native::cpublas::brgemm_release();
    }
  });

  // stage 1.5: intermediate_cache1 = silu(intermediate_cache0)
  at::parallel_for(0, M * topk, 0, [&](int64_t begin, int64_t end) {
    for (int64_t m = begin; m < end; ++m) {
      silu_and_mul_stub(ic1 + m * N, ic0 + m * 2 * N, ic0 + m * 2 * N + N, N);
    }
  });

  // stage 2: intermediate_cache2 = intermediate_cache1 @ w2
  //   w2 : [E, K, N] as [E, OC, IC]
  const int64_t OC = K;  // rename K as OC
  const int64_t IC = N;  // rename N as IC
  const int64_t MB2 = MB;
  const int64_t NB2 = div_up(OC, BLOCK_N);
  scale_size_N = div_up(K, block_size_N);
  scale_size_K = div_up(N, block_size_K);
  const int64_t stride_e2 = OC * IC;
  const int64_t stride_oc = IC;

  // parallel on [MB2, NB2]
  at::parallel_for(0, MB2 * NB2, 0, [&](int64_t begin, int64_t end) {
    alignas(64) scalar_t Btmp[BLOCK_K * BLOCK_N];
    alignas(64) scalar_t C[BLOCK_M * BLOCK_K];
    alignas(64) float Ctmp[BLOCK_M * BLOCK_K];

    bool is_brgemm_used = false;

    for (int64_t i = begin; i < end; ++i) {
      int64_t mb = i / NB2;
      int64_t nb = i % NB2;

      int64_t m_size = offsets[mb + 1] - offsets[mb];
      int64_t n_size = std::min(OC - nb * BLOCK_N, BLOCK_N);

      const bool use_brgemm = can_use_brgemm<at::Float8_e4m3fn>(m_size);
      is_brgemm_used = is_brgemm_used || use_brgemm;

      // A ptr from ic1 of [M * topk, N] in sorted order
      // so as to avoid copy A to tmp buffer again
      const scalar_t* __restrict__ A = ic1 + offsets[mb] * N;
      const int32_t* A_ids = sorted_ids + mb * BLOCK_M;

      // B shape [IC, n_size] in vnni format
      int32_t expert_id = expert_ids[mb];
      const at::Float8_e4m3fn* __restrict__ B = packed_w2 + expert_id * stride_e2 + nb * BLOCK_N * stride_oc;
      const float* __restrict__ Bs =
          w2s + expert_id * scale_size_N * scale_size_K + (nb / blocks_n_per_group) * scale_size_K;

      tinygemm_kernel<scalar_t>(
          /*   A            */ A,
          /*   B            */ B,
          /*   C            */ C,
          /*   Btmp         */ Btmp,
          /*   Ctmp         */ Ctmp,
          /*   scale        */ Bs,
          /*   M            */ m_size,
          /*   N            */ n_size,
          /*   K            */ IC,
          /*   lda          */ IC,
          /*   ldb          */ n_size,
          /*   ldc          */ BLOCK_N,
          /*   brg          */ use_brgemm,
          /*   block_size_K */ block_size_K);

      // 2.b copy from C to ic2 in original order
      //   and also mul topk_weights in float32
      for (int64_t m = 0; m < m_size; ++m) {
        int32_t index = A_ids[m];
        float weight = topk_weights[index];
        copy_mul_stub(ic2 + index * K + nb * BLOCK_N, C + m * BLOCK_N, weight, n_size);
      }
    }

    if (is_brgemm_used) {
      at::native::cpublas::brgemm_release();
    }
  });

  // stage 3: out = intermediate_cache2.sum(dim=1)
  //   from [M, topk, K] to [M, K]
  at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
    for (int64_t m = begin; m < end; ++m) {
      sum_stub(output + m * K, ic2 + m * topk * K, topk, K);
    }
  });
}

#define INSTANTIATE_MOE_FP8_TEMPLATE(TYPE)             \
  template void fused_experts_fp8_kernel_impl<TYPE>(   \
      TYPE* __restrict__ output,                       \
      TYPE* __restrict__ ic0,                          \
      TYPE* __restrict__ ic1,                          \
      TYPE* __restrict__ ic2,                          \
      TYPE* __restrict__ A_tmp,                        \
      const TYPE* __restrict__ input,                  \
      const at::Float8_e4m3fn* __restrict__ packed_w1, \
      const at::Float8_e4m3fn* __restrict__ packed_w2, \
      const float* __restrict__ w1s,                   \
      const float* __restrict__ w2s,                   \
      int64_t block_size_N,                            \
      int64_t block_size_K,                            \
      const float* __restrict__ topk_weights,          \
      const int32_t* __restrict__ sorted_ids,          \
      const int32_t* __restrict__ expert_ids,          \
      const int32_t* __restrict__ offsets,             \
      int64_t M,                                       \
      int64_t N,                                       \
      int64_t K,                                       \
      int64_t E,                                       \
      int64_t topk,                                    \
      int64_t num_tokens_post_pad)

INSTANTIATE_MOE_FP8_TEMPLATE(at::BFloat16);
INSTANTIATE_MOE_FP8_TEMPLATE(at::Half);

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
template <typename scalar_t>
void shared_expert_fp8_kernel_impl(
    scalar_t* __restrict__ output,
    scalar_t* __restrict__ ic0,
    scalar_t* __restrict__ ic1,
    const scalar_t* __restrict__ input,
    const at::Float8_e4m3fn* __restrict__ packed_w1,
    const at::Float8_e4m3fn* __restrict__ packed_w2,
    const float* __restrict__ w1s,
    const float* __restrict__ w2s,
    int64_t block_size_N,
    int64_t block_size_K,
    const scalar_t* __restrict__ fused_experts_out,
    float routed_scaling_factor,
    int64_t M,
    int64_t N,
    int64_t K) {
  constexpr int64_t BLOCK_M = block_size_m();
  constexpr int64_t BLOCK_N = block_size_n();

  // stage 1: intermediate_cache0 = hidden_states @ w1
  const int64_t MB = div_up(M, BLOCK_M);
  const int64_t NB = div_up(2 * N, BLOCK_N);
  int64_t scale_size_K = div_up(K, block_size_K);
  int64_t blocks_n_per_group = block_size_N / BLOCK_N;

  const bool use_brgemm = can_use_brgemm<at::Float8_e4m3fn>(M);

  at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
    alignas(64) scalar_t Btmp[BLOCK_N * BLOCK_K];
    alignas(64) float Ctmp[BLOCK_M * BLOCK_N];

    for (int64_t i = begin; i < end; ++i) {
      int64_t mb = i / NB;
      int64_t nb = i % NB;
382
383
      int64_t m_size = std::min(M - mb * BLOCK_M, BLOCK_M);
      int64_t n_size = std::min(2 * N - nb * BLOCK_N, BLOCK_N);
384
385
386
387
388
389
390
391

      tinygemm_kernel<scalar_t>(
          /*   A            */ input + mb * BLOCK_M * K,
          /*   B            */ packed_w1 + nb * BLOCK_N * K,
          /*   C            */ ic0 + mb * BLOCK_M * 2 * N + nb * BLOCK_N,
          /*   Btmp         */ Btmp,
          /*   Ctmp         */ Ctmp,
          /*   scale        */ w1s + (nb / blocks_n_per_group) * scale_size_K,
392
393
          /*   M            */ m_size,
          /*   N            */ n_size,
394
395
          /*   K            */ K,
          /*   lda          */ K,
396
          /*   ldb          */ n_size,
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
          /*   ldc          */ 2 * N,
          /*   brg          */ use_brgemm,
          /*   block_size_K */ block_size_K);
    }

    if (use_brgemm) {
      at::native::cpublas::brgemm_release();
    }
  });

  // stage 1.5: intermediate_cache1 = silu(intermediate_cache0)
  at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
    for (int64_t m = begin; m < end; ++m) {
      silu_and_mul_stub(ic1 + m * N, ic0 + m * 2 * N, ic0 + m * 2 * N + N, N);
    }
  });

  // stage 2: intermediate_cache2 = intermediate_cache1 @ w2
  //   w2 : [K, N] as [OC, IC]
  const int64_t OC = K;  // rename K as OC
  const int64_t IC = N;  // rename N as IC
  const int64_t MB2 = MB;
  const int64_t NB2 = div_up(K, BLOCK_N);
  scale_size_K = div_up(N, block_size_K);

  // parallel on [MB2, NB2]
  at::parallel_for(0, MB2 * NB2, 0, [&](int64_t begin, int64_t end) {
    alignas(64) scalar_t Btmp[BLOCK_K * BLOCK_N];
    alignas(64) scalar_t C[BLOCK_M * BLOCK_K];
    alignas(64) float Ctmp[BLOCK_M * BLOCK_K];

    for (int64_t i = begin; i < end; ++i) {
      int64_t mb = i / NB2;
      int64_t nb = i % NB2;
431
432
      int64_t m_size = std::min(M - mb * BLOCK_M, BLOCK_M);
      int64_t n_size = std::min(OC - nb * BLOCK_N, BLOCK_N);
433
434
435
436
437
438
439
440
441

      // 2.a gemm: C = A @ B
      tinygemm_kernel<scalar_t>(
          /*   A            */ ic1 + mb * BLOCK_M * N,
          /*   B            */ packed_w2 + nb * BLOCK_N * N,
          /*   C            */ C,
          /*   Btmp         */ Btmp,
          /*   Ctmp         */ Ctmp,
          /*   scale        */ w2s + (nb / blocks_n_per_group) * scale_size_K,
442
443
          /*   M            */ m_size,
          /*   N            */ n_size,
444
445
          /*   K            */ IC,
          /*   lda          */ IC,
446
          /*   ldb          */ n_size,
447
448
449
450
451
452
453
          /*   ldc          */ BLOCK_N,
          /*   brg          */ use_brgemm,
          /*   block_size_K */ block_size_K);

      // 2.b copy from C to output and add fused_experts_out
      scalar_t* __restrict__ out = output + mb * BLOCK_M * K + nb * BLOCK_N;
      const scalar_t* __restrict__ fused_out = fused_experts_out + mb * BLOCK_M * K + nb * BLOCK_N;
454
455
      for (int64_t m = 0; m < m_size; ++m) {
        add_mul_stub(out + m * K, C + m * BLOCK_N, fused_out + m * K, routed_scaling_factor, n_size);
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
      }
    }
  });

  if (use_brgemm) {
    at::native::cpublas::brgemm_release();
  }
}

#define INSTANTIATE_SHARED_EXPERT_FP8_TEMPLATE(TYPE)   \
  template void shared_expert_fp8_kernel_impl<TYPE>(   \
      TYPE* __restrict__ output,                       \
      TYPE* __restrict__ ic0,                          \
      TYPE* __restrict__ ic1,                          \
      const TYPE* __restrict__ input,                  \
      const at::Float8_e4m3fn* __restrict__ packed_w1, \
      const at::Float8_e4m3fn* __restrict__ packed_w2, \
      const float* __restrict__ w1s,                   \
      const float* __restrict__ w2s,                   \
      int64_t block_size_N,                            \
      int64_t block_size_K,                            \
      const TYPE* __restrict__ fused_experts_out,      \
      float routed_scaling_factor,                     \
      int64_t M,                                       \
      int64_t N,                                       \
      int64_t K)

INSTANTIATE_SHARED_EXPERT_FP8_TEMPLATE(at::BFloat16);
INSTANTIATE_SHARED_EXPERT_FP8_TEMPLATE(at::Half);