moe_sum_reduce.cu 9.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda.h>
#include <cudaTypedefs.h>
#include <cuda_runtime.h>
#include <torch/all.h>

#include <iostream>
#include <type_traits>

#include "cutlass/array.h"
#include "utils.h"

template <typename T>
__device__ __forceinline__ float to_float(T x) {
  return static_cast<float>(x);
}

template <>
__device__ __forceinline__ float to_float<half>(half x) {
  return __half2float(x);
}

template <typename T>
__device__ __forceinline__ T from_float(float x) {
  return static_cast<T>(x);
}

template <>
__device__ __forceinline__ half from_float<half>(float x) {
  return __float2half_rn(x);
}

template <typename T>
__device__ __forceinline__ T ldg_cg(const T* p) {
  return __ldg(p);
}

union Pack16B {
  uint4 v;
  __nv_bfloat16 u16[8];
};

template <int WARPS_PER_BLOCK>
__global__ void moe_sum_reduce_warp_per_token_vec_kernel(
    const at::BFloat16* __restrict__ x,
    at::BFloat16* __restrict__ y,
    const int64_t token_num,
    const int64_t hidden_dim,
    const int64_t topk_num,
    const int64_t stride_token,      // in elements
    const int64_t stride_topk,       // in elements
    const int64_t out_stride_token,  // in elements
    const float scale) {
  constexpr int VEC = 16;
  constexpr int PACKS = VEC / 8;

  const int warp_id = threadIdx.x / 32;
  const int lane = threadIdx.x % 32;
  const int64_t t = (int64_t)blockIdx.y * WARPS_PER_BLOCK + warp_id;
  if (t >= token_num) return;

  const int64_t n_chunks = hidden_dim / VEC;

  for (int64_t chunk = (int64_t)blockIdx.x * 32 + lane; chunk < n_chunks; chunk += (int64_t)gridDim.x * 32) {
    const int64_t d = chunk * VEC;
    const int64_t base = t * stride_token + d;

    float acc[VEC];
#pragma unroll
    for (int i = 0; i < VEC; ++i)
      acc[i] = 0.f;

#pragma unroll
    for (int k = 0; k < topk_num; ++k) {
#pragma unroll
      for (int p = 0; p < PACKS; ++p) {
        const int64_t offset = base + (int64_t)k * stride_topk + p * 8;
        Pack16B pack = {ldg_cg(reinterpret_cast<const uint4*>(x + offset))};

#pragma unroll
        for (int i = 0; i < 8; ++i) {
          acc[p * 8 + i] += __bfloat162float(pack.u16[i]);
        }
      }
    }

#pragma unroll
    for (int i = 0; i < VEC; ++i)
      acc[i] *= scale;

#pragma unroll
    for (int p = 0; p < PACKS; ++p) {
      Pack16B outp;
#pragma unroll
      for (int i = 0; i < 8; ++i) {
        outp.u16[i] = __float2bfloat16_rn(acc[p * 8 + i]);
      }
      const int64_t dst = t * out_stride_token + d + p * 8;
      *reinterpret_cast<uint4*>(y + dst) = outp.v;
    }
  }
}

template <typename scalar_t, int TOPK, int WARPS_PER_BLOCK>
__global__ void moe_sum_reduce_kernel_warp_token_topk(
    const scalar_t* __restrict__ x,
    scalar_t* __restrict__ y,
    const int64_t token_num,
    const int64_t hidden_dim,
    const int64_t stride_token,
    const int64_t stride_topk,
    const int64_t out_stride_token,
    const float scale) {
  const int warp_id = threadIdx.x / 32;
  const int lane = threadIdx.x % 32;
  const int64_t t = (int64_t)blockIdx.y * WARPS_PER_BLOCK + warp_id;
  if (t >= token_num) return;

  for (int64_t d = (int64_t)blockIdx.x * 32 + lane; d < hidden_dim; d += (int64_t)gridDim.x * 32) {
    float acc = 0.f;
    const int64_t base = t * stride_token + d;

#pragma unroll
    for (int k = 0; k < TOPK; ++k) {
      acc += to_float<scalar_t>(ldg_cg(&x[base + (int64_t)k * stride_topk]));
    }
    acc *= scale;
    y[t * out_stride_token + d] = from_float<scalar_t>(acc);
  }
}

template <typename scalar_t, int TOPK>
__global__ void moe_sum_reduce_kernel(
    const scalar_t* __restrict__ x,
    scalar_t* __restrict__ y,
    const int64_t token_num,
    const int64_t hidden_dim,
    const int64_t stride_token,
    const int64_t stride_topk,
    const int64_t out_stride_token,
    const float scale) {
  for (int t = blockIdx.y; t < token_num; t += gridDim.y) {
    for (int d = blockIdx.x * blockDim.x + threadIdx.x; d < hidden_dim; d += blockDim.x * gridDim.x) {
      const int64_t base = t * stride_token + d;
      float acc = 0.f;

#pragma unroll
      for (int k = 0; k < TOPK; ++k) {
        acc += to_float<scalar_t>(x[base + (int64_t)k * stride_topk]);
      }

      acc *= scale;
      y[t * out_stride_token + d] = from_float<scalar_t>(acc);
    }
  }
}

void moe_sum_reduce(at::Tensor& input, at::Tensor& output, double routed_scaling_factor) {
  TORCH_CHECK(input.is_cuda(), "input must be CUDA tensor");
  TORCH_CHECK(output.is_cuda(), "output must be CUDA tensor");
  TORCH_CHECK(input.dim() == 3, "input must be a 3D tensor like [token_num, topk_num, hidden_dim]");
  TORCH_CHECK(output.dim() == 2, "output must be [token_num, hidden_dim]");
  TORCH_CHECK(input.size(0) == output.size(0), "token dim mismatch");
  TORCH_CHECK(input.size(2) == output.size(1), "hidden_dim mismatch");

  TORCH_CHECK(input.is_contiguous(), "expect input to be contiguous");
  TORCH_CHECK(output.is_contiguous(), "expect output to be contiguous");

  const int64_t token_num = input.size(0);
  const int64_t topk_num = input.size(1);
  const int64_t hidden_dim = input.size(2);

  const int64_t in_stride_token = input.stride(0);
  const int64_t in_stride_topk = input.stride(1);
  const int64_t out_stride_token = output.stride(0);

  const float scale = static_cast<float>(routed_scaling_factor);

  auto stream = at::cuda::getCurrentCUDAStream();

  const bool fast_bf16_vec_ok = (input.scalar_type() == at::kBFloat16) && (token_num > 256) && (hidden_dim % 8 == 0);

  // Fast path for bf16 vectorize
  if (fast_bf16_vec_ok) {
    constexpr int WARPS_PER_BLOCK = 8;
    constexpr int THREADS = WARPS_PER_BLOCK * 32;

    const int64_t n_chunks = hidden_dim / 8;
    int64_t grid_x = (n_chunks + 32 - 1) / 32;
    if (grid_x > 65535) grid_x = 65535;

    int64_t grid_y = (token_num + WARPS_PER_BLOCK - 1) / WARPS_PER_BLOCK;
    if (grid_y > 65535) grid_y = 65535;

    dim3 block(THREADS);
    dim3 grid(static_cast<unsigned>(grid_x), static_cast<unsigned>(grid_y));

    auto stream = at::cuda::getCurrentCUDAStream();

    moe_sum_reduce_warp_per_token_vec_kernel<WARPS_PER_BLOCK><<<grid, block, 0, stream>>>(
        reinterpret_cast<const at::BFloat16*>(input.data_ptr<at::BFloat16>()),
        reinterpret_cast<at::BFloat16*>(output.data_ptr<at::BFloat16>()),
        token_num,
        hidden_dim,
        topk_num,
        in_stride_token,
        in_stride_topk,
        out_stride_token,
        scale);

    TORCH_CHECK(cudaGetLastError() == cudaSuccess, "moe_sum_reduce CUDA kernel launch failed");
    return;
  }

  const bool per_token_use_one_warp = (token_num > 128);

  auto dispatch_topk = [&](auto&& launch_kernel) {
    switch (topk_num) {
      case 2:
        launch_kernel(std::integral_constant<int, 2>{});
        break;
      case 4:
        launch_kernel(std::integral_constant<int, 4>{});
        break;
      case 8:
        launch_kernel(std::integral_constant<int, 8>{});
        break;
      case 9:
        launch_kernel(std::integral_constant<int, 9>{});
        break;
      default:
        launch_kernel(std::integral_constant<int, -1>{});
        break;
    }
  };

  if (!per_token_use_one_warp) {
    // ---------- small-token ----------
    const int block_size = 256;
    int64_t grid_x = (hidden_dim + block_size - 1) / block_size;
    grid_x = grid_x > 65535 ? 65535 : grid_x;
    int64_t grid_y = token_num < 65535 ? token_num : 65535;

    dim3 block(block_size);
    dim3 grid(static_cast<unsigned>(grid_x), static_cast<unsigned>(grid_y));

    AT_DISPATCH_FLOATING_TYPES_AND2(
        at::kHalf, at::kBFloat16, input.scalar_type(), "moe_sum_reduce_cuda_small_token", [&] {
          using scalar_t_ = scalar_t;

          auto lauch_small_token_kernel = [&](auto topk_c) {
            constexpr int TK = decltype(topk_c)::value;

            moe_sum_reduce_kernel<scalar_t_, TK><<<grid, block, 0, stream>>>(
                input.data_ptr<scalar_t_>(),
                output.data_ptr<scalar_t_>(),
                token_num,
                hidden_dim,
                in_stride_token,
                in_stride_topk,
                out_stride_token,
                scale);
          };
          dispatch_topk(lauch_small_token_kernel);
        });

  } else {
    // ---------- warp-token ----------
    constexpr int WARPS_PER_BLOCK = 4;
    constexpr int THREADS = WARPS_PER_BLOCK * 32;

    int64_t gx = (hidden_dim + 32 - 1) / 32;
    gx = gx > 65535 ? 65535 : gx;

    int64_t gy = (token_num + WARPS_PER_BLOCK - 1) / WARPS_PER_BLOCK;
    gy = gy > 65535 ? 65535 : gy;

    dim3 block(THREADS);
    dim3 grid(static_cast<unsigned>(gx), static_cast<unsigned>(gy));

    AT_DISPATCH_FLOATING_TYPES_AND2(
        at::kHalf, at::kBFloat16, input.scalar_type(), "moe_sum_reduce_cuda_large_token", [&] {
          using scalar_t_ = scalar_t;

          auto launch_large_token_kernel = [&](auto topk_c) {
            constexpr int TK = decltype(topk_c)::value;

            moe_sum_reduce_kernel_warp_token_topk<scalar_t_, TK, WARPS_PER_BLOCK><<<grid, block, 0, stream>>>(
                input.data_ptr<scalar_t_>(),
                output.data_ptr<scalar_t_>(),
                token_num,
                hidden_dim,
                in_stride_token,
                in_stride_topk,
                out_stride_token,
                scale);
          };
          dispatch_topk(launch_large_token_kernel);
        });
  }
  TORCH_CHECK(cudaGetLastError() == cudaSuccess, "CUDA kernel launch failed");
}