layer.py 22.1 KB
Newer Older
xiaobochen's avatar
xiaobochen committed
1
2
3
4
5
6
7
import logging
from typing import Callable, List, Optional, Tuple

import torch
from torch.nn import Module
from vllm import _custom_ops as ops

8
from sglang.srt.custom_op import CustomOp
9
10
11
12
from sglang.srt.distributed import (
    get_tensor_model_parallel_rank,
    get_tensor_model_parallel_world_size,
)
Ke Bao's avatar
Ke Bao committed
13
from sglang.srt.layers.moe.ep_moe.kernels import (
xiaobochen's avatar
xiaobochen committed
14
15
16
17
18
19
    grouped_gemm_triton,
    post_reorder_triton_kernel,
    pre_reorder_triton_kernel,
    run_moe_ep_preproess,
    silu_and_mul_triton_kernel,
)
Ke Bao's avatar
Ke Bao committed
20
21
from sglang.srt.layers.moe.fused_moe_triton.layer import FusedMoEMethodBase
from sglang.srt.layers.moe.topk import select_experts
xiaobochen's avatar
xiaobochen committed
22
23
24
25
from sglang.srt.layers.quantization.base_config import (
    QuantizationConfig,
    QuantizeMethodBase,
)
26
from sglang.srt.layers.quantization.fp8 import Fp8Config, Fp8MoEMethod
xiaobochen's avatar
xiaobochen committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from sglang.srt.utils import is_hip, set_weight_attrs

logger = logging.getLogger(__name__)


class GroupedGemmRunner(torch.nn.Module):
    flashinfer_gemm_warpper = None

    def __init__(self, device, use_flashinfer: bool = False):
        super().__init__()
        self.device = device
        self.use_flashinfer = use_flashinfer
        if self.use_flashinfer and GroupedGemmRunner.flashinfer_gemm_warpper is None:
            GroupedGemmRunner._init_flashinfer_wrapper(device)

    @classmethod
    def _init_flashinfer_wrapper(cls, device):
        from flashinfer import SegmentGEMMWrapper

        workspace_buffer = torch.empty(
            128 * 1024 * 1024, dtype=torch.int8, device=device
        )
        cls.flashinfer_gemm_warpper = SegmentGEMMWrapper(workspace_buffer)

    # c = a * b
    def forward(
        self,
        a: torch.Tensor,
        b: torch.Tensor,
        c: torch.Tensor,
        batch_size: int,
        weight_column_major: bool,
        seg_indptr: Optional[torch.Tensor] = None,
        weight_indices: Optional[torch.Tensor] = None,
        use_fp8_w8a8: bool = False,
        scale_a: torch.Tensor = None,
        scale_b: torch.Tensor = None,
    ):
        if self.use_flashinfer:
            # TODO: flashinfer
            assert False
            assert GroupedGemmRunner.flashinfer_gemm_warpper is not None
            c = GroupedGemmRunner.flashinfer_gemm_warpper.run(
                x=a,
                weights=b,
                batch_size=batch_size,
                weight_column_major=weight_column_major,
                seg_indptr=seg_indptr,
                weight_indices=weight_indices,
            )
        else:
            assert weight_column_major == True
            c = grouped_gemm_triton(
                a,
                b,
                c,
                batch_size,
                weight_column_major,
                seg_indptr,
                weight_indices,
                use_fp8_w8a8,
                scale_a,
                scale_b,
            )
        return c


class EPMoE(torch.nn.Module):
    """
    MoE Expert Parallel Impl


    """

    def __init__(
        self,
        num_experts: int,
        top_k: int,
        hidden_size: int,
        intermediate_size: int,
        params_dtype: Optional[torch.dtype] = None,
        renormalize: bool = True,
        use_grouped_topk: bool = False,
        num_expert_group: Optional[int] = None,
        topk_group: Optional[int] = None,
        quant_config: Optional[QuantizationConfig] = None,
        tp_size: Optional[int] = None,
        prefix: str = "",
Ke Bao's avatar
Ke Bao committed
115
        correction_bias: Optional[torch.Tensor] = None,
116
        custom_routing_function: Optional[Callable] = None,
117
        activation: str = "silu",
xiaobochen's avatar
xiaobochen committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    ):
        super().__init__()

        if params_dtype is None:
            params_dtype = torch.get_default_dtype()

        self.tp_size = (
            tp_size if tp_size is not None else get_tensor_model_parallel_world_size()
        )
        self.tp_rank = get_tensor_model_parallel_rank()

        self.num_experts = num_experts
        assert self.num_experts % self.tp_size == 0
        self.num_experts_per_partition = self.num_experts // self.tp_size
        self.start_expert_id = self.tp_rank * self.num_experts_per_partition
        self.end_expert_id = self.start_expert_id + self.num_experts_per_partition - 1

        self.top_k = top_k
        self.intermediate_size = intermediate_size
        self.renormalize = renormalize
        self.use_grouped_topk = use_grouped_topk
        if self.use_grouped_topk:
            assert num_expert_group is not None and topk_group is not None
        self.num_expert_group = num_expert_group
        self.topk_group = topk_group
Ke Bao's avatar
Ke Bao committed
143
        self.correction_bias = correction_bias
144
        self.custom_routing_function = custom_routing_function
145
        self.activation = activation
xiaobochen's avatar
xiaobochen committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

        if quant_config is None:
            self.quant_method: Optional[QuantizeMethodBase] = UnquantizedEPMoEMethod()
            self.use_fp8_w8a8 = False
            self.activation_scheme = None
        else:
            self.quant_method: Optional[QuantizeMethodBase] = Fp8EPMoEMethod(
                quant_config
            )
            self.use_fp8_w8a8 = True
            self.fp8_dtype = torch.float8_e4m3fn
            self.activation_scheme = quant_config.activation_scheme

        self.quant_method.create_weights(
            layer=self,
            num_experts_per_partition=self.num_experts_per_partition,
            hidden_size=hidden_size,
            intermediate_size=self.intermediate_size,
            params_dtype=params_dtype,
            weight_loader=self.weight_loader,
        )

        self.grouped_gemm_runner = None

    def forward(self, hidden_states: torch.Tensor, router_logits: torch.Tensor):
        assert self.quant_method is not None
172
        assert self.activation == "silu"
xiaobochen's avatar
xiaobochen committed
173
174
175
176
177
178

        if self.grouped_gemm_runner is None:
            self.grouped_gemm_runner = GroupedGemmRunner(
                hidden_states.device, use_flashinfer=False  # TODO: use flashinfer
            )

Ke Bao's avatar
Ke Bao committed
179
180
181
182
183
184
185
186
187
        topk_weights, topk_ids = select_experts(
            hidden_states=hidden_states,
            router_logits=router_logits,
            top_k=self.top_k,
            use_grouped_topk=self.use_grouped_topk,
            renormalize=self.renormalize,
            topk_group=self.topk_group,
            num_expert_group=self.num_expert_group,
            correction_bias=self.correction_bias,
188
            custom_routing_function=self.custom_routing_function,
xiaobochen's avatar
xiaobochen committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        )

        reorder_topk_ids, src2dst, seg_indptr = run_moe_ep_preproess(
            topk_ids, self.num_experts
        )

        gateup_input = torch.empty(
            (int(hidden_states.shape[0] * self.top_k), hidden_states.shape[1]),
            device=hidden_states.device,
            dtype=self.fp8_dtype if self.use_fp8_w8a8 else hidden_states.dtype,
        )
        if self.activation_scheme == "dynamic":
            max_value = (
                torch.max(hidden_states)
                .repeat(self.num_experts_per_partition)
                .to(torch.float32)
            )
            self.w13_input_scale = max_value / torch.finfo(self.fp8_dtype).max

        # PreReorder
        pre_reorder_triton_kernel[(hidden_states.shape[0],)](
            hidden_states,
            gateup_input,
            src2dst,
            topk_ids,
            self.w13_input_scale,
            self.start_expert_id,
            self.end_expert_id,
            self.top_k,
            hidden_states.shape[1],
            BLOCK_SIZE=512,
        )

        seg_indptr_cur_rank = seg_indptr[self.start_expert_id : self.end_expert_id + 2]
        weight_indices_cur_rank = torch.arange(
            0,
            self.num_experts_per_partition,
            device=hidden_states.device,
            dtype=torch.int64,
        )
        # GroupGemm-0
        gateup_output = torch.empty(
            gateup_input.shape[0],
            self.w13_weight.shape[1],
            device=hidden_states.device,
            dtype=hidden_states.dtype,
        )
        gateup_output = self.grouped_gemm_runner(
            a=gateup_input,
            b=self.w13_weight,
            c=gateup_output,
            batch_size=self.num_experts_per_partition,
            weight_column_major=True,
            seg_indptr=seg_indptr_cur_rank,
            weight_indices=weight_indices_cur_rank,
            use_fp8_w8a8=self.use_fp8_w8a8,
            scale_a=self.w13_input_scale,
            scale_b=self.w13_weight_scale,
        )

        # Act
        down_input = torch.empty(
            gateup_output.shape[0],
            gateup_output.shape[1] // 2,
            device=gateup_output.device,
            dtype=self.fp8_dtype if self.use_fp8_w8a8 else hidden_states.dtype,
        )
        if self.w2_input_scale is None:
            self.w2_input_scale = torch.ones(
                self.num_experts_per_partition,
                dtype=torch.float32,
                device=hidden_states.device,
            )
262
263
264
265
266
267
268
269
270
271
272
273
274
275

        if self.activation == "silu":
            silu_and_mul_triton_kernel[(gateup_output.shape[0],)](
                gateup_output,
                down_input,
                gateup_output.shape[1],
                reorder_topk_ids,
                self.w2_input_scale,
                self.start_expert_id,
                self.end_expert_id,
                BLOCK_SIZE=512,
            )
        else:
            raise ValueError(f"Unsupported activation: {self.activation=}")
xiaobochen's avatar
xiaobochen committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627

        # GroupGemm-1
        down_output = torch.empty(
            down_input.shape[0],
            self.w2_weight.shape[1],
            device=hidden_states.device,
            dtype=hidden_states.dtype,
        )
        down_output = self.grouped_gemm_runner(
            a=down_input,
            b=self.w2_weight,
            c=down_output,
            batch_size=self.num_experts_per_partition,
            weight_column_major=True,
            seg_indptr=seg_indptr_cur_rank,
            weight_indices=weight_indices_cur_rank,
            use_fp8_w8a8=self.use_fp8_w8a8,
            scale_a=self.w2_input_scale,
            scale_b=self.w2_weight_scale,
        )

        # PostReorder
        output = torch.empty_like(hidden_states)
        post_reorder_triton_kernel[(hidden_states.size(0),)](
            down_output,
            output,
            src2dst,
            topk_ids,
            topk_weights,
            self.start_expert_id,
            self.end_expert_id,
            self.top_k,
            hidden_states.size(1),
            BLOCK_SIZE=512,
        )
        return output

    @classmethod
    def make_expert_params_mapping(
        cls,
        ckpt_gate_proj_name: str,
        ckpt_down_proj_name: str,
        ckpt_up_proj_name: str,
        num_experts: int,
    ) -> List[Tuple[str, str, int, str]]:
        return [
            # (param_name, weight_name, expert_id, shard_id)
            (
                (
                    "experts.w13_"
                    if weight_name in [ckpt_gate_proj_name, ckpt_up_proj_name]
                    else "experts.w2_"
                ),
                f"experts.{expert_id}.{weight_name}.",
                expert_id,
                shard_id,
            )
            for expert_id in range(num_experts)
            for shard_id, weight_name in [
                ("w1", ckpt_gate_proj_name),
                ("w2", ckpt_down_proj_name),
                ("w3", ckpt_up_proj_name),
            ]
        ]

    def weight_loader(
        self,
        param: torch.nn.Parameter,
        loaded_weight: torch.Tensor,
        weight_name: str,
        shard_id: str,
        expert_id: int,
    ) -> None:
        if expert_id < self.start_expert_id or expert_id > self.end_expert_id:
            return
        expert_id = expert_id - self.start_expert_id

        if shard_id not in ("w1", "w2", "w3"):
            raise ValueError(
                f"shard_id must be ['w1','w2','w3'] but " f"got {shard_id}."
            )

        # Special case for fp8 scales.
        if "scale" in weight_name:
            self._load_fp8_scale(
                param.data, loaded_weight, weight_name, shard_id, expert_id
            )
            return

        if shard_id == "w2":
            param.data[expert_id] = loaded_weight
        elif shard_id == "w1":
            param.data[expert_id][: self.intermediate_size, :] = loaded_weight
        elif shard_id == "w3":
            param.data[expert_id][self.intermediate_size :, :] = loaded_weight
        else:
            raise ValueError(f"Expected shard_id w1,w2 or w3 but got {shard_id}")

    def _load_fp8_scale(
        self,
        param: torch.nn.Parameter,
        loaded_weight: torch.Tensor,
        weight_name: str,
        shard_id: str,
        expert_id: int,
    ) -> None:
        param_data = param.data

        # Input scales can be loaded directly and should be equal.
        if "input_scale" in weight_name:
            if (
                param_data[expert_id] != 1
                and (param_data[expert_id] - loaded_weight).abs() > 1e-5
            ):
                raise ValueError(
                    "input_scales of w1 and w3 of a layer "
                    f"must be equal. But got {param_data[expert_id]} "
                    f"vs. {loaded_weight}"
                )
            param_data[expert_id] = loaded_weight
        # Weight scales
        elif "weight_scale" in weight_name:
            # If we are in merged column case (gate_up_proj)
            if shard_id in ("w1", "w3"):
                # We have to keep the weight scales of w1 and w3 because
                # we need to re-quantize w1/w3 weights after weight loading.
                idx = 0 if shard_id == "w1" else 1
                param_data[expert_id][idx] = loaded_weight
            # If we are in the row parallel case (down_proj)
            else:
                param_data[expert_id] = loaded_weight


class UnquantizedEPMoEMethod(FusedMoEMethodBase, CustomOp):
    def create_weights(
        self,
        layer: torch.nn.Module,
        num_experts_per_partition: int,
        hidden_size: int,
        intermediate_size: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        # Fused gate_up_proj (column parallel)
        w13_weight = torch.nn.Parameter(
            torch.empty(
                num_experts_per_partition,
                2 * intermediate_size,
                hidden_size,
                dtype=params_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight", w13_weight)
        set_weight_attrs(w13_weight, extra_weight_attrs)

        # down_proj (row parallel)
        w2_weight = torch.nn.Parameter(
            torch.empty(
                num_experts_per_partition,
                hidden_size,
                intermediate_size,
                dtype=params_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight", w2_weight)
        set_weight_attrs(w2_weight, extra_weight_attrs)

        # scale
        ones_tensor = torch.ones(num_experts_per_partition, dtype=torch.float32)
        w13_input_scale = torch.nn.Parameter(
            ones_tensor,
            requires_grad=False,
        )
        layer.register_parameter("w13_input_scale", w13_input_scale)
        set_weight_attrs(w13_input_scale, extra_weight_attrs)

        w2_input_scale = torch.nn.Parameter(
            ones_tensor,
            requires_grad=False,
        )
        layer.register_parameter("w2_input_scale", w2_input_scale)
        set_weight_attrs(w2_input_scale, extra_weight_attrs)

        w13_weight_scale = torch.nn.Parameter(
            ones_tensor,
            requires_grad=False,
        )
        layer.register_parameter("w13_weight_scale", w13_weight_scale)
        set_weight_attrs(w13_weight_scale, extra_weight_attrs)

        w2_weight_scale = torch.nn.Parameter(
            ones_tensor,
            requires_grad=False,
        )
        layer.register_parameter("w2_weight_scale", w2_weight_scale)
        set_weight_attrs(w2_weight_scale, extra_weight_attrs)

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        router_logits: torch.Tensor,
        top_k: int,
        renormalize: bool,
        use_grouped_topk: bool,
        topk_group: Optional[int] = None,
        num_expert_group: Optional[int] = None,
        custom_routing_function: Optional[Callable] = None,
    ) -> torch.Tensor:
        raise NotImplementedError


class Fp8EPMoEMethod(Fp8MoEMethod):
    """MoE method for FP8.
    Supports loading FP8 checkpoints with static weight scale and
    dynamic/static activation scale.

    Args:
        quant_config: The quantization config.
    """

    def __init__(self, quant_config: Fp8Config):
        self.quant_config = quant_config

    def create_weights(
        self,
        layer: Module,
        num_experts_per_partition: int,
        hidden_size: int,
        intermediate_size: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):

        if self.quant_config.is_checkpoint_fp8_serialized:
            params_dtype = torch.float8_e4m3fn

        # WEIGHTS
        w13_weight = torch.nn.Parameter(
            torch.empty(
                num_experts_per_partition,
                2 * intermediate_size,
                hidden_size,
                dtype=params_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight", w13_weight)
        set_weight_attrs(w13_weight, extra_weight_attrs)

        w2_weight = torch.nn.Parameter(
            torch.empty(
                num_experts_per_partition,
                hidden_size,
                intermediate_size,
                dtype=params_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight", w2_weight)
        set_weight_attrs(w2_weight, extra_weight_attrs)

        # WEIGHT_SCALES
        # Allocate 2 scales for w1 and w3 respectively.
        w13_weight_scale = torch.nn.Parameter(
            torch.ones(num_experts_per_partition, 2, dtype=torch.float32),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight_scale", w13_weight_scale)

        w2_weight_scale = torch.nn.Parameter(
            torch.ones(num_experts_per_partition, dtype=torch.float32),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight_scale", w2_weight_scale)
        # Add the quantization method used (per tensor/grouped/channel)
        # to ensure the weight scales are loaded in properly
        extra_weight_attrs.update({"quant_method": "tensor"})
        # If loading fp8 checkpoint, pass the weight loaders.
        # If loading an fp16 checkpoint, do not (we will quantize in
        #   process_weights_after_loading()
        if self.quant_config.is_checkpoint_fp8_serialized:
            set_weight_attrs(w13_weight_scale, extra_weight_attrs)
            set_weight_attrs(w2_weight_scale, extra_weight_attrs)

        # INPUT_SCALES
        if self.quant_config.activation_scheme == "static":
            if not self.quant_config.is_checkpoint_fp8_serialized:
                raise ValueError(
                    "Found static activation scheme for checkpoint that "
                    "was not serialized fp8."
                )

            w13_input_scale = torch.nn.Parameter(
                torch.ones(num_experts_per_partition, dtype=torch.float32),
                requires_grad=False,
            )
            layer.register_parameter("w13_input_scale", w13_input_scale)
            set_weight_attrs(w13_input_scale, extra_weight_attrs)

            w2_input_scale = torch.nn.Parameter(
                torch.ones(num_experts_per_partition, dtype=torch.float32),
                requires_grad=False,
            )
            layer.register_parameter("w2_input_scale", w2_input_scale)
            set_weight_attrs(w2_input_scale, extra_weight_attrs)

        else:
            layer.w13_input_scale = None
            layer.w2_input_scale = None

    def process_weights_after_loading(self, layer: Module) -> None:

        # If checkpoint is fp16, quantize in place.
        if not self.quant_config.is_checkpoint_fp8_serialized:
            # If rocm, use float8_e4m3fnuz as dtype
            fp8_dtype = torch.float8_e4m3fnuz if is_hip() else torch.float8_e4m3fn
            w13_weight = torch.empty_like(layer.w13_weight.data, dtype=fp8_dtype)
            w2_weight = torch.empty_like(layer.w2_weight.data, dtype=fp8_dtype)

            layer.w13_weight_scale = torch.nn.Parameter(
                torch.ones(
                    layer.num_experts_per_partition,
                    dtype=torch.float32,
                    device=w13_weight.device,
                ),
                requires_grad=False,
            )

            for expert in range(layer.num_experts_per_partition):
                w13_weight[expert, :, :], layer.w13_weight_scale[expert] = (
                    ops.scaled_fp8_quant(layer.w13_weight.data[expert, :, :])
                )
                w2_weight[expert, :, :], layer.w2_weight_scale[expert] = (
                    ops.scaled_fp8_quant(layer.w2_weight.data[expert, :, :])
                )
            layer.w13_weight = torch.nn.Parameter(w13_weight, requires_grad=False)
            layer.w2_weight = torch.nn.Parameter(w2_weight, requires_grad=False)
            return

        # If checkpoint is fp8, we need to handle that the
        # MoE kernels require single activation scale and single weight
        # scale for w13 per expert.
        else:
            if self.quant_config.activation_scheme == "static":
                if layer.w13_input_scale is None or layer.w2_input_scale is None:
                    raise ValueError(
                        "QuantConfig has static quantization, but found "
                        "activation scales are None."
                    )
628
629
630
631
                layer.w13_weight_scale = torch.nn.Parameter(
                    torch.max(layer.w13_weight_scale, dim=1).values,
                    requires_grad=False,
                )
xiaobochen's avatar
xiaobochen committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
            return

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        router_logits: torch.Tensor,
        top_k: int,
        renormalize: bool,
        use_grouped_topk: bool,
        topk_group: Optional[int] = None,
        num_expert_group: Optional[int] = None,
        custom_routing_function: Optional[Callable] = None,
    ) -> torch.Tensor:
        raise NotImplementedError